Math, asked by raman106, 1 year ago

solve sin 2 theta + sin 4 theta + sin 6 theta =0

Answers

Answered by ayushawasthi291
2

mpossible it is  12 theta


Answered by subhashnidevi4878
16

\bold{\theta = \frac{(2n + 1)\times \pi}{2} \pm \frac{\pi}{6}}

Step-by-step explanation:

Given,

sin 2\theta + sin 4\theta + sin 6\theta = 0

sin 6\theta + sin 2\theta +sin 4\theta = 0

sin A + sin B = 2\sin \frac{(A + B)}{2} \times cos \frac{(A - B)}{2}

2 \sin 4\theta \times cos 2 \theta + sin 4\theta = 0

sin 4 \theta\times (2\times cos 2\theta + 1) = 0

sin 4\theta = 0 and , 2 \times cos 2 \theta + 1 = 0

From,sin 4\theta = 0

\theta = \frac{n\times \pi}{4}

From 2 cos 2\theta + 1 = 0 ,

2\theta = (2n + 1)\times \pi \pm \frac{\pi}{3}

\bold{\theta = \frac{(2n + 1)\times \pi}{2} \pm \frac{\pi}{6}}

Similar questions