Math, asked by Jaheerbasha8839, 8 months ago

solve sin theta /1+cos theta +1-cos theta /sin theta =2 cosec thetaa

Answers

Answered by prity62052
1

Step-by-step explanation:

solve it simply as isolve

Attachments:
Answered by gpvvsainadh
0

Step-by-step explanation:

we use followin formula from sub multiple angles.

 \sin( \alpha ) = 2 \sin( \frac{ \alpha }{2} )  \cos( \frac{ \alpha }{2} )

 \cos( \alpha )  = 2 { \cos}^{2} ( \frac{ \alpha }{2} ) - 1 = 1 - 2 { \sin}^{2}  \alpha

substitute in lhs

 \frac{2 \sin(  \frac{ \alpha }{2}  ) \cos(  \frac{ \alpha }{2}  )  }{1 + 2 { \cos }^{2}  (\frac{ \alpha }{2}  ) - 1 }  +  \frac{1 -(1 -  2 { \sin }^{2}  (\frac{ \alpha }{2} ) )   }{2 \sin( \frac{ \alpha }{2}  )\cos( \frac{ \alpha }{2} ) }  \\  \frac{2 \sin(  \frac{ \alpha }{2}  ) \cos(  \frac{ \alpha }{2}  )  }{2 { \cos }^{2}  (\frac{ \alpha }{2}  ) }  +  \frac{ 2 { \sin }^{2}  (\frac{ \alpha }{2} )    }{2 \sin( \frac{ \alpha }{2}  )\cos( \frac{ \alpha }{2} ) }  \\   \frac{ \sin(  \frac{ \alpha }{2}  ) \  }{ { \cos }  (\frac{ \alpha }{2}  )  }  +  \frac{{ \ \cos }  (\frac{ \alpha }{2}  )   }{\ \sin ( \frac{ \alpha }{2} ) }  \\  \frac{ { \sin }^{2} \ \frac{ \alpha }{2} +  { \cos}^{2}   \frac{ \alpha }{2}  }{ \sin( \frac{ \alpha }{2} )  \cos( \frac{ \alpha }{2} ) }  \\  \frac{1}{ \sin( \frac{ \alpha }{2} ) \cos( \frac{ \alpha }{2} )  }  \\  \frac{2}{2 \sin( \frac{ \alpha }{2} ) \cos( \frac{ \alpha }{2} )  }  \\  \frac{2}{ \sin( \alpha ) }  \\ 2cosec (\alpha )

Similar questions