Math, asked by CaptainSnowbaII, 1 month ago

··· Solve :-
sin x − 3 sin2x + sin3x = cos x − 3 cos2x + cos3x
 \\
!!...REQUIRED QUALITY ANSWER...!!
!!...Trigonometry...!!

Answers

Answered by shadowsabers03
64

We're asked to solve,

\longrightarrow\sin x-3\sin(2x)+\sin(3x)=\cos x-3\cos(2x)+\cos(3x)

or,

\longrightarrow\sin(3x)+\sin x-3\sin(2x)=\cos(3x)+\cos x-3\cos(2x)

We have,

  • \sin A+\sin B=2\sin\left(\dfrac{A+B}{2}\right)\cos\left(\dfrac{A-B}{2}\right)
  • \cos A+\cos B=2\cos\left(\dfrac{A+B}{2}\right)\cos\left(\dfrac{A-B}{2}\right)

Then,

\footnotesize\text{$\longrightarrow2\sin\left(\dfrac{3x+x}{2}\right)\cos\left(\dfrac{3x-x}{2}\right)-3\sin(2x)=2\cos\left(\dfrac{3x+x}{2}\right)\cos\left(\dfrac{3x-x}{2}\right)-3\cos(2x)$}

\longrightarrow2\sin(2x)\cos x-3\sin(2x)=2\cos(2x)\cos x-3\cos(2x)

Taking \sin(2x) common in LHS and \cos(2x) common in RHS,

\longrightarrow\sin(2x)(2\cos x-3)=\cos(2x)(2\cos x-3)

Taking RHS to LHS,

\longrightarrow\sin(2x)(2\cos x-3)-\cos(2x)(2\cos x-3)=0

\longrightarrow(\sin(2x)-\cos(2x))(2\cos x-3)=0

This implies,

\longrightarrow2\cos x-3=0

\longrightarrow \cos x=\dfrac{3}{2}

This is not possible since \cos x\in\left[-1,\ 1\right]\not\cancel\ni\dfrac{3}{2}.

And,

\longrightarrow\sin(2x)-\cos(2x)=0

\longrightarrow\sin(2x)=\cos(2x)

\longrightarrow\dfrac{\sin(2x)}{\cos(2x)}=1

\longrightarrow\tan(2x)=1

\Longrightarrow 2x=n\pi+\dfrac{\pi}{4}

\longrightarrow\underline{\underline{x=\dfrac{n\pi}{2}+\dfrac{\pi}{8}}}

This is the solution of the equation where n\in\mathbb{Z}.


mddilshad11ab: Awesome¶sbro
amansharma264: Excellent
Answered by NeatAnswerer
95

ANSWER :

It ai given to solve the given pairs of Trigonometry, To solve,

Follow the steps...

 \\

⇒ 2 sin2x cosx − 3 sin2x − 2 cos2x cosx + 3 cos2x = 0

⇒ sin2x (2cosx − 3) − cos2x (2 cosx − 3) = 0

⇒ (sin2x − cos2x) (2 cosx − 3) = 0

⇒ sin2x = cos2x

⇒ 2x = 2nπ ± (π / 2 − 2x) i.e.,

x = nπ / 2 + π / 8

 \\

More Information :-

If f(x) and g(x) are basic trigonometric functions then period of [af (x) + bg(x)] = L.C.M.

 \\

Similar questions