Math, asked by mohananrajmohanan, 4 months ago

Solve:Sin3theta(2cos2theta-1)=0​

Answers

Answered by senboni123456
0

Step-by-step explanation:

We have,

 \sin(3 \theta ) (2 \cos(2\theta) - 1) = 0

 \implies \sin( 3\theta)  = 0 \:  \: or \:  \: 2 \cos(2\theta)  - 1 = 0 \\

 \implies3\theta = n\pi \:  \: or \:  \:  \cos(2\theta)  =  \frac{1}{2} \\

 \implies\theta =  \frac{n\pi}{3}  \:  \: or \:  \: 2\theta = 2m\pi +   \frac{\pi}{3}  \:  \: or \:  \: 2\theta = 2m\pi -  \frac{\pi}{3}  \\

 \implies\theta  = \frac{n\pi}{ 3} \:  \: or \:  \:  \theta = m\pi +  \frac{\pi}{6}  \:  \: or \:  \: \theta = m\pi -  \frac{\pi}{6}  \\ for \: \:  all \:  \: m \:  \: and \:  \: n \:  \:  \in \:  \: integers

Similar questions