Math, asked by vesperum, 1 year ago

solve : sin⁴ x + cos⁴ x = sin x cos x​

Answers

Answered by spiderman2019
2

Answer:

x = 45°

Step-by-step explanation:

sin⁴ x + cos⁴ x = sin x cos x

(Sin²x)² + (Cos²x)² = SinxCosx

(Sin²x + Cos²x) - 2Sin²xCos²x = SinxCosx

1 - 2Sin²xCos²x = SinxCosx

2Sin²xCos²x+ SinxCosx - 1 = 0

2Sin²xCos²x+ 2SinxCosx - SinxCosx - 1 = 0

2SinxCosx(SinxCosx + 1) - 1(SinxCosx+1) = 0

(2SinxCosx - 1)(SinxCosx+1) = 0

2SinxCosx - 1 = 0                     |    SinxCosx + 1 = 0    

2SinxCosx = 1                           |   SinxCosx =  - 1

Sin2x = 1                                    |  2SinxCosx = -2  

Sin2x = Sin90                           | Sin2x = - 2

2x = 90                                      | this is not valid....

=> x = 45°                                  |

Similar questions