solve : sin⁴ x + cos⁴ x = sin x cos x
Answers
Answered by
2
Answer:
x = 45°
Step-by-step explanation:
sin⁴ x + cos⁴ x = sin x cos x
(Sin²x)² + (Cos²x)² = SinxCosx
(Sin²x + Cos²x) - 2Sin²xCos²x = SinxCosx
1 - 2Sin²xCos²x = SinxCosx
2Sin²xCos²x+ SinxCosx - 1 = 0
2Sin²xCos²x+ 2SinxCosx - SinxCosx - 1 = 0
2SinxCosx(SinxCosx + 1) - 1(SinxCosx+1) = 0
(2SinxCosx - 1)(SinxCosx+1) = 0
2SinxCosx - 1 = 0 | SinxCosx + 1 = 0
2SinxCosx = 1 | SinxCosx = - 1
Sin2x = 1 | 2SinxCosx = -2
Sin2x = Sin90 | Sin2x = - 2
2x = 90 | this is not valid....
=> x = 45° |
Similar questions