Math, asked by dassiddhant27, 3 months ago

solve: sin4theta+sin2theta=costheta​

Answers

Answered by senboni123456
0

Step-by-step explanation:

We have,

 \sin(4 \theta)  +  \sin(2 \theta) =  \cos( \theta)

  \implies \: 2\sin \bigg( \frac{4 \theta + 2 \theta}{2} \bigg)  \cos \bigg( \frac{4 \theta - 2 \theta}{2} \bigg) =  \cos( \theta)   \\

  \implies \: 2\sin ( 3 \theta )  \cos ( \theta ) =  \cos( \theta)   \\

  \implies \: 2\sin ( 3 \theta )  \cos ( \theta )  -  \cos( \theta) = 0   \\

  \implies \cos ( \theta )(2\sin ( 3 \theta )    - 1) = 0   \\

  \implies \cos ( \theta ) = 0  \:  \: or \:  \: 2\sin ( 3 \theta )    - 1 = 0   \\

  \implies \cos ( \theta ) = 0  \:  \: or \:  \: \sin ( 3 \theta )     =  \frac{1}{2}    \\

  \implies \theta  = (2n + 1) \frac{\pi}{2}   \:  \: or \:  \: 3 \theta      = m\pi  + ( - 1) ^{m}.  \frac{\pi}{6}    \\

  \implies \theta  = (2n + 1) \frac{\pi}{2}   \:  \: or \:  \: \theta      =  \frac{m\pi }{3} + ( - 1) ^{m}.  \frac{\pi}{18}    \\

Similar questions