solve sin4x+sin3x+sin2x=0
Answers
Answer:
To solve for x from the given trigonometric equation. There could be multiple solutions too.
x = 0, n * π , 60° , 120°, 240° , 300°
Step-by-step explanation:
Sin 4x + Sin 3x + Sin 2 x = 0
Sin 2x = 2 Sin x * Cos x
Sin 3x = 3 sin x - 4 sin³ x
Sin 4 x = 2 Sin 2x * Cos 2x
Sin 4x + Sin 2x = 2 Sin (4x + 2x)/2 * Cos (4x - 2x)/2
= 2 Sin 3x * Cos x
So LHS = 2 Sin 3x * Cos x + Sin 3x = 0
= Sin 3x * (2 Cos x + 1) = 0
So either sin 3x = 0, or Cos x = -1/2, ie., x = 2π/3,
Sin 3x = 3 Sin x - 4 Sin³ x = 0 means
Sin x * (3 - 4 Sin² x) = 0
=> Sin x = 0 ie., x = 0, or π or 2 π or n * π, where n is an integer.
Also it can be that 3 = 4 Sin² x
So Sin x = ± √3/2 means that x = π/3, 2π/3, 2π - π/3 etc.