Math, asked by khushboomaharana06, 1 month ago

Solve: - (sin60° + cos30°) – (sin 30° + cos60°)​

Answers

Answered by velpulaaneesh123
12

\mathbb{ANSWER:}

\boxed{0.5}

Step-by-step explanation:

We know that, sin 60^o = \frac{\sqrt{3} }{2}

cos 30^o = \frac{\sqrt{3} }{2} \\\\sin30^o = \frac{1}{2} \\\\cos60^o = \frac{1}{2}

Putting all values,

(sin60° + cos30°) – (sin 30° + cos60°)​

 \Longrightarrow (\frac{\sqrt{3} }{2} + \frac{\sqrt{3} }{2}) -( \frac{1}{2} +  \frac{1}{2} )\\\\\Longrightarrow \frac{\sqrt{3}+\sqrt{3}  }{2 +2} -\frac{1}{2 \times2} \\\\\Longrightarrow\frac{3}{4}  - \frac{1}{4}\\\\\Longrightarrow \frac{3-1}{4} \\\\\Longrightarrow \frac{2}{4} \\\\\Longrightarrow \frac{1}{2} (cancellation)\\\\\Longrightarrow 0.5

\bold{HENCE,} \bold{(sin60^o + cos30^o) - (sin 30^o + cos60^o)} =\boxed{ \bold{0.5}}

\huge \pink \bigstar{ \green{ \boxed{ \boxed{ \boxed{ \purple{ \mathfrak{hope \: it \: helps}}}}}}} \pink\bigstar

Similar questions