solve sinx+sin2x+sin3x+sin4x=0
Answers
Answered by
4
Answer:
Step-by-step explanation:
sin x + sin 2x + sin 3x + sin 4x = 0
( sin 3x + sin x) + ( sin 2x + sin 4x ) = 0
2 sin 2x cos x + 2 Sin3x cosx= 0
2 [ sin 2x cos x + sin 3 x cos x ] =0
2 cos x [ sin 2x + sin 3x ] =0
2 cos x [ sin 5x/2 × cos x/2 ] = 0
cos x = 0
x = (2n + 1) π/2
sin5x/2 = 0
5x/2=nπ
x=2nπ/5
cos x/2=0
x/2=(2n+1)π/2
x=(2n+1)
Similar questions