Math, asked by tom1247, 1 year ago

solve sinx +sin5x=sin3x

Answers

Answered by guptasingh4564
6

x have four different values;

x=\frac{2\pi n}{3} , \:x=\frac{\pi }{3}+\frac{2\pi n}{3} , x=-\frac{\pi }{6}-\pi n and x=-\frac{5\pi }{6}-\pi n

Step-by-step explanation:

Given;

sinx+sin5x=sin3x

sinx+sin5x-sin3x=0

2sin\frac{x+5x}{2} cos\frac{x-5x}{2} -sin3x=0

2sin(3x)cos(-2x)-sin(3x)=0

sin3x(2cos(-2x)-1)=0

sin 3x=0  or  2cos(-2x)-1=0

∴  sin 3x=0

3x=0+2\pi n , \:3x=\pi +2\pi n

x=\frac{2\pi n}{3},\:x=\frac{\pi }{3}+\frac{2\pi n}{3}

And,

2cos(-2x)-1=0

cos(-2x)=\frac{1}{2}

-2x=\frac{\pi }{3}+2\pi n , -2x=\frac{5\pi }{3}+2\pi n

x=-\frac{\pi }{6}-\pi n , x=-\frac{5\pi }{6}-\pi n

So, x have four different values;

x=\frac{2\pi n}{3} , \:x=\frac{\pi }{3}+\frac{2\pi n}{3} , x=-\frac{\pi }{6}-\pi n and x=-\frac{5\pi }{6}-\pi n

Similar questions