Math, asked by nancy359, 1 month ago

Solve :-


SOLVE IN NOTEBOOK​

Attachments:

Answers

Answered by anindyaadhikari13
7

\textsf{\large{\underline{Solution}:}}

We have to prove that:

\rm:\longmapsto \dfrac{ \sin(x) - 2 \sin^{3} (x) }{2 \cos^{3} (x) -  \cos(x)  }  =  \tan(x)

Taking Left Hand Side, we get:

\rm =  \dfrac{ \sin(x) - 2 \sin^{3} (x) }{2 \cos^{3} (x) -  \cos(x)  }

We can take sin(x) as common from numerator part. We get:

\rm =  \dfrac{ \sin(x) \{1- 2 \sin^{2} (x) \}}{2 \cos^{3} (x) -  \cos(x)  }

Similarly, we can take cos(x) as common from first two terms. We get:

\rm =  \dfrac{ \sin(x) \{1- 2 \sin^{2} (x) \}}{ \cos(x) \{ 2 \cos^{2} (x) -1\}}

\rm = \dfrac{ \sin(x) }{ \cos(x) } \cdot   \dfrac{\{1- 2 \sin^{2} (x) \}}{\{ 2 \cos^{2} (x) -1\}}

As we know that:

\rm: \longmapsto \dfrac{ \sin(x) }{ \cos(x) }  =  \tan(x)

We get:

\rm = \tan(x)  \cdot   \dfrac{\{1- 2 \sin^{2} (x) \}}{\{ 2 \cos^{2} (x) -1\}}

Now, we will expand the terms in fraction:

\rm = \tan(x)  \cdot   \dfrac{\{1-  \sin^{2} (x)  -  { \sin }^{2}(x) \}}{\{\cos^{2} (x) +  \cos^{x}(x)  -1\}}

As we know that:

\rm: \longmapsto \sin^{2}(x)+cos^{2}(x)=1

\rm: \longmapsto\cos^{2}(x)=1-sin^{2}(x)

\rm: \longmapsto\cos^{2}(x) - 1=-sin^{2}(x)

Now substitute the values in the expression, we get:

\rm = \tan(x)\cdot \dfrac{ \cos^{2} (x)-{ \sin }^{2}(x)}{\cos^{2} (x) -  \sin^{2} (x) }

\rm = \tan(x)\cdot1

\rm = \tan(x)

We observe that Left Hand Side = Right Hand Side.

Hence Proved..!!

\textsf{\large{\underline{More To Know}:}}

1. Relationship between sides.

  • sin(x) = Height/Hypotenuse.
  • cos(x) = Base/Hypotenuse.
  • tan(x) = Height/Base.
  • cot(x) = Base/Height.
  • sec(x) = Hypotenuse/Base.
  • cosec(x) = Hypotenuse/Height.

2. Square formulae.

  • sin²x + cos²x = 1.
  • cosec²x - cot²x = 1.
  • sec²x - tan²x = 1

3. Reciprocal Relationship.

  • sin(x) = 1/cosec(x).
  • cos(x) = 1/sec(x).
  • tan(x) = 1/cot(x).

4. Cofunction identities.

  • sin(90° - x) = cos(x) and vice versa.
  • cosec(90° - x) = sec(x) and vice versa.
  • tan(90° - x) = cot(x) and vice versa.
Similar questions