solve solve solve solve solve
Answers
EXPLANATION.
(1) = √(2x + 9) + x = 13.
As we know that,
We can write equation as,
⇒ √2x + 9 = 13 - x.
Squaring on both sides of equation, we get.
⇒ (√2x + 9)² = (13 - x)².
⇒ 2x + 9 = (13 - x)².
As we know that,
Formula of :
⇒ (x - y)² = x² + y² - 2xy.
Using this formula in equation, we get.
⇒ 2x + 9 = 169 + x² - 26x.
⇒ x² - 26x - 2x + 169 - 9 = 0.
⇒ x² - 28x + 160 = 0.
Factorizes the equation into middle term splits, we get.
⇒ x² - 20x - 8x + 160 = 0.
⇒ x(x - 20) - 8(x - 20) = 0.
⇒ (x - 8)(x - 20) = 0.
⇒ x = 8 and x = 20.
(2) = √(y² - y + 2) + y = 1.
As we know that,
We can write equation as,
⇒ √y² - y + 2 = 1 - y.
Squaring both the equation, we get.
⇒ (√y² - y + 2)² = (1 - y)².
⇒ y² - y + 2 = (1 - y)².
As we know that,
Formula of :
⇒ (x - y)² = x² + y² - 2xy.
Using this formula in equation, we get.
⇒ y² - y + 2 = 1 + y² - 2y.
⇒ y² - y + 2 - 1 - y² + 2y = 0.
⇒ - y + 2y + 2 - 1 = 0.
⇒ y + 1 = 0.
⇒ y = -1.
MORE INFORMATION.
Nature of the factors of the quadratic expression.
(1) = Real and different, if b² - 4ac > 0.
(2) = Rational and different, if b² - 4ac is a perfect square.
(3) = Real and equal, if b² - 4ac = 0.
(4) = If D < 0 Roots are imaginary and unequal or complex conjugate.
Solution
(1) = √(2x + 9) + x = 13.
As we know that,
We can write equation as,
⇒ √2x + 9 = 13 - x.
Squaring on both sides of equation, we get.
⇒ (√2x + 9)² = (13 - x)².
⇒ 2x + 9 = (13 - x)².
As we know that,
Formula of :
⇒ (x - y)² = x² + y² - 2xy.
Using this formula in equation, we get.
⇒ 2x + 9 = 169 + x² - 26x.
⇒ x² - 26x - 2x + 169 - 9 = 0.
⇒ x² - 28x + 160 = 0.
Factorizes the equation into middle term splits, we get.
⇒ x² - 20x - 8x + 160 = 0.
⇒ x(x - 20) - 8(x - 20) = 0.
⇒ (x - 8)(x - 20) = 0.
⇒ x = 8 and x = 20.
(2) = √(y² - y + 2) + y = 1.
As we know that,
We can write equation as,
⇒ √y² - y + 2 = 1 - y.
Squaring both the equation, we get.
⇒ (√y² - y + 2)² = (1 - y)².
⇒ y² - y + 2 = (1 - y)².
As we know that,
Formula of :
⇒ (x - y)² = x² + y² - 2xy.
Using this formula in equation, we get.
⇒ y² - y + 2 = 1 + y² - 2y.
⇒ y² - y + 2 - 1 - y² + 2y = 0.
⇒ - y + 2y + 2 - 1 = 0.
⇒ y + 1 = 0.
⇒ y = -1.
MORE INFORMATION.
Nature of the factors of the quadratic expression.
(1) = Real and different, if b² - 4ac > 0.
(2) = Rational and different, if b² - 4ac is a perfect square.
(3) = Real and equal, if b² - 4ac = 0.
(4) = If D < 0 Roots are imaginary and unequal or complex conjugate.