Math, asked by AARYANRATHOD28, 5 hours ago

solve step by step I will mark the one as brainlist

Attachments:

Answers

Answered by bhupendrarajawat85
0

Answer:

expressing 0.729 as a fraction

0.729 = 729 / 1000

= 9^3 / 10^3

therefore, 3√0.729 = 3√9^3/10^3

= 9/10

= 0.9

Now, mark me brainlist

Answered by mathdude500
7

Given Question :-

Find the cube root of 0.729

 \green{\large\underline{\sf{Solution-}}}

Given expression is

\rm :\longmapsto\: \sqrt[3]{0.729}

can be rewritten as

\rm \:  =  \:  \sqrt[3]{\dfrac{729}{1000} }

Now, we use prime factorization method to find the cube root.

So, Consider

 \purple{\rm :\longmapsto\:Prime \: Factorization \: of \: 729}

 \purple{\begin{gathered}\begin{gathered}\begin{gathered} \:\: \begin{array}{c|c} {\underline{\sf{3}}}&{\underline{\sf{\:\:729 \:\:}}}\\ {\underline{\sf{3}}}& \underline{\sf{\:\:243 \:\:}} \\\underline{\sf{3}}&\underline{\sf{\:\:81\:\:}} \\ {\underline{\sf{3}}}& \underline{\sf{\:\:27 \:\:}}\\ {\underline{\sf{3}}}& \underline{\sf{\:\:9 \:\:}} \\ {\underline{\sf{3}}}& \underline{\sf{\:\:3\:\:}}\\\underline{\sf{}}&{\sf{\:\:1 \:\:}} \end{array}\end{gathered}\end{gathered}\end{gathered}}

\purple{\rm\implies \: Prime \: Factorization \: of \: 729 = 3 \times 3 \times 3 \times 3 \times 3 \times 3}

Now, Consider

 \green{\rm :\longmapsto\:Prime \: Factorization \: of \: 1000}

 \green{\begin{gathered}\begin{gathered}\begin{gathered} \:\: \begin{array}{c|c} {\underline{\sf{2}}}&{\underline{\sf{\:\:1000 \:\:}}}\\ {\underline{\sf{2}}}& \underline{\sf{\:\:500 \:\:}} \\\underline{\sf{2}}&\underline{\sf{\:\:250\:\:}} \\ {\underline{\sf{5}}}& \underline{\sf{\:\:125\:\:}}\\ {\underline{\sf{5}}}& \underline{\sf{\:\:25 \:\:}} \\ {\underline{\sf{5}}}& \underline{\sf{\:\:5\:\:}}\\\underline{\sf{}}&{\sf{\:\:1 \:\:}} \end{array}\end{gathered}\end{gathered}\end{gathered}}

 \green{\rm\implies \:Prime \: Factorization \: of \: 1000 = 2 \times 2 \times 2 \times 5 \times 5 \times 5}

So,

\rm \:  =  \:  \sqrt[3]{\dfrac{729}{1000} }

\rm \:  =  \:  \sqrt[3]{\dfrac{3 \times 3 \times 3 \times 3 \times 3 \times 3}{2 \times 2 \times 2 \times 5 \times 5 \times 5} }

\rm \:  =  \:  \sqrt[3]{\dfrac{ \underbrace{3 \times 3 \times 3} \times \underbrace{3 \times 3 \times 3}}{\underbrace{2 \times 2 \times 2} \times \underbrace{5 \times 5 \times 5}} }

\rm \:  =  \: \dfrac{3 \times 3}{2 \times 5}

\rm \:  =  \: \dfrac{9}{10}

\rm \:  =  \: 0.9

Hence,

\rm\implies \:\:\underbrace{\boxed{\tt{  \:  \:  \:  \:  \sqrt[3]{0.729}  = 0.9 \:  \:  \:  \: }}}

Similar questions