Math, asked by dishamadhu, 2 days ago

Solve (t+1)/2 + (t-3)/3 = (2t+5)/6
Correct answer will be marked as brainliest
Please answer fast

Answers

Answered by aadikrishnatraya100
0

+12+−33=(2+5)6

\frac{t+1}{2}+\frac{t-3}{3}=\frac{(2t+5)}{6}2t+1+3t−3=6(2t+5)

3(+1)6+2(−3)6=(2+5)6

3(+1)6+2(−3)6=(2+5)6

\frac{3(t+1)}{6}+\frac{2(t-3)}{6}=\frac{(2t+5)}{6}63(t+1)+62(t−3)=6(2t+5)

3(+1)+2(−3)6=(2+5)6

3(+1)+2(−3)6=(2+5)6

\frac{{\color{#c92786}{3(t+1)}}+2(t-3)}{6}=\frac{(2t+5)}{6}63(t+1)+2(t−3)=6(2t+5)

3+3+2(−3)6=(2+5)6

3+3+2−66=(2+5)6

\frac{3t+{\color{#c92786}{3}}+2t{\color{#c92786}{-6}}}{6}=\frac{(2t+5)}{6}63t+3+2t−6=6(2t+5)

3−3+26=(2+5)6

3−3+26=(2+5)6

\frac{{\color{#c92786}{3t}}-3+{\color{#c92786}{2t}}}{6}=\frac{(2t+5)}{6}63t−3+2t=6(2t+5)

5−36=(2+5)6

Multiply all terms by the same value to eliminate fraction denominators

5−36=2+56

\frac{5t-3}{6}=\frac{2t+5}{6}65t−3=62t+5

6⋅5−36=6(2+56)

Cancel multiplied terms that are in the denominator

6⋅5−36=6(2+56)

6 \cdot \frac{5t-3}{6}=6(\frac{2t+5}{6})6⋅65t−3=6(62t+5)

5−3=2+5

5−3=2+5

5t-3=2t+55t−3=2t+5

5−3+3=2+5+3

5=2+8

5t=2t+85t=2t+8

5−2=2+8−2

3=8

3t=83t=8

33=8/3

=8/3

Similar questions