Solve : tan^-1(x-5/x-6)+tan^-1(x+5/x+6)=pi/4
Answers
Answered by
5
Answer:
± 7 / √2
Step-by-step explanation:
tan⁻ ¹ ( x - 5 / x - 6 ) + tan⁻ ¹ ( x + 5 / x + 6 ) = π / 4
Using tan⁻ ¹ a + tan⁻ ¹ b = tan⁻ ¹ ( a + b / 1 - ab ) we get
Taking tan on both sides
⇒ ( 2x² - 60 ) / - 11 = 1
⇒ 2x² - 60 = - 11
⇒ 2x² = - 11 + 60
⇒ 2x² = 49
⇒ x² = 49 / 2
⇒ x = ± √49/2
⇒ x = ± √49 / √2
⇒ x = ± 7 / √2
Therefore the value of x is ± 7 / √2.
Similar questions