Math, asked by Sramgarhia894, 10 months ago

Solve : tan^-1(x-5/x-6)+tan^-1(x+5/x+6)=pi/4

Answers

Answered by Anonymous
5

Answer:

± 7 / √2

Step-by-step explanation:

tan⁻ ¹ ( x - 5 / x - 6 ) + tan⁻ ¹ ( x + 5 / x + 6 ) = π / 4

Using tan⁻ ¹ a + tan⁻ ¹ b = tan⁻ ¹ ( a + b / 1 - ab ) we get

 \Rightarrow \sf tan^{ - 1}  \dfrac{ \dfrac{x - 5}{x - 6}  +  \dfrac{x + 5}{x + 6} }{1 -   \bigg(\dfrac{x + 5}{x  + 6}  \bigg) \bigg( \dfrac{x - 5}{x - 6} \bigg)}  =  \dfrac{\pi}{4}  \\

 \Rightarrow \sf tan^{ - 1} \bigg( \dfrac{2x^2 - 60}{-11} \bigg) =  \dfrac{\pi}{4}  \\

Taking tan on both sides

 \Rightarrow \sf  \dfrac{2x^2 - 60  }{-11}  =  tan\dfrac{\pi}{4}  \\

⇒ ( 2x² - 60 ) / - 11 = 1

⇒ 2x² - 60 = - 11

⇒ 2x² = - 11 + 60

⇒ 2x² = 49

⇒ x² = 49 / 2

⇒ x = ± √49/2

⇒ x = ± √49 / √2

⇒ x = ± 7 / √2

Therefore the value of x is ± 7 / √2.

Similar questions