Math, asked by rajeevkumar715, 11 months ago

Solve tan(120+A)+tan(120-A)=¿


AbhijithPrakash: Do you know the answer??
rajeevkumar715: No

Answers

Answered by AbhijithPrakash
11

Answer:

\tan \left(120^{\circ \:}+A\right)+\tan \left(120^{\circ \:}-A\right)=\tan \left(\dfrac{360^{\circ \:}+3A}{3}\right)+\tan \left(\dfrac{360^{\circ \:}-3A}{3}\right)

Step-by-step explanation:

\tan \left(120^{\circ \:}+A\right)+\tan \left(120^{\circ \:}-A\right)

\mathrm{Join}\:120^{\circ \:}+A

120^{\circ \:}+A

\mathrm{Convert\:element\:to\:fraction}:\quad \:A=\dfrac{A3}{3}

=120^{\circ \:}+\dfrac{A\cdot \:3}{3}

\mathrm{Since\:the\:denominators\:are\:equal,\:combine\:the\:fractions}:\quad \dfrac{a}{c}\pm \dfrac{b}{c}=\dfrac{a\pm \:b}{c}

=\dfrac{360^{\circ \:}+A\cdot \:3}{3}

=\tan \left(\dfrac{3A+360^{\circ \:}}{3}\right)+\tan \left(120^{\circ \:}-A\right)

\mathrm{Join}\:120^{\circ \:}-A

120^{\circ \:}-A

\mathrm{Convert\:element\:to\:fraction}:\quad \:A=\dfrac{A3}{3}

=120^{\circ \:}-\dfrac{A\cdot \:3}{3}

\mathrm{Since\:the\:denominators\:are\:equal,\:combine\:the\:fractions}:\quad \dfrac{a}{c}\pm \dfrac{b}{c}=\dfrac{a\pm \:b}{c}

=\dfrac{360^{\circ \:}-A\cdot \:3}{3}

=\tan \left(\dfrac{3A+360^{\circ \:}}{3}\right)+\tan \left(\dfrac{360^{\circ \:}-3A}{3}\right)


rajeevkumar715: Thnk u for. Ur try.... May be it true ya wrong... I don't know
Similar questions