Solve tan theta + sec theta = root3
Answers
Answered by
0
Answer:
⬆️⬆️hope it could helps you:)
thanks!!
Attachments:
Answered by
18
Answer:
Ф = 2 n π + π / 6 OR 2 n π - π / 2 , n € Z
Step-by-step explanation:
Given :
tan Ф + sec Ф = √ 3
sin Ф / cos Ф + 1 / cos Ф = √ 3
sin Ф + 1 = √ 3 cos Ф
√ 3 cos Ф - sin Ф = 1
r = √ ( ( √ 3 )² + 1² ) = 2
Dividing by 2 both side we get :
√ 3 / 2 cos Ф - 1 / 2 sin Ф = 1 / 2
cos Ф cos π / 6 - sin Ф sin π / 6 = 1 / 2
Using identity cos ( A + B ) = cos A cos B - sin A sin B
cos ( Ф + π /6 ) = cos π / 3
On comparing we get :
Ф + π / 6 = π / 3
Ф = π / 6
We know if :
cos Ф = cos α
= > Ф = 2 n π ± α where n € Z
So , general solution is as :
= > Ф = 2 n π + π / 6 n € Z or
= > Ф = 2 n π - π / 2 , n € Z
Therefore we get answer.
Attachments:
Similar questions