solve tany* dy/dx=sin(x+y)+sin(x-y)
Answers
EXPLANATION.
⇒ tan(y).dy/dx = sin(x + y) + sin(x - y).
As we know that,
⇒ dy/dx = sin(x + y) + sin(x - y)/tan(y).
⇒ dy/dx = sin(x)cos(y) + sin(y)cos(x) + sin(x)cos(y) - sin(y)cos(x)/tan(y).
⇒ dy/dx = sin(x)cos(y) + sin(x)cos(y)/tan(y).
⇒ dy/dx = 2 sin(x)cos(y)/tan(y).
⇒ tan(y)/cos(y) dy = 2sin(x)dx.
⇒ sin(y)/cos²(y) dy = 2sin(x)dx.
Integrate both sides, we get.
⇒ ∫sin(y)/cos²(y)dy = ∫2sin(x)dx.
From L.H.S, we get.
By using substitution method, we get.
Let we assume that,
⇒ cos(y) = t.
⇒ Differentiate w.r.t x , we get.
⇒ -sin(y)dy = dt.
Put the value in the equation, we get.
⇒ ∫-dt/t² = 1/t. = 1/cos(y).
⇒ 1/cos(y) = 2(-cos x) + c.
⇒ 1/cos(y) = C - 2cos(x).
MORE INFORMATION.
To solve the homogenous differential equation dy/dx = f(x, y)/g(x, y) , substitute y = vx and So, dy/dx = v + x.dv/dx.
Thus, v + x dy/dx = f(v) = dx/x = dv/f(v) - v.
Therefore solution is,
⇒ ∫dx/x = ∫dv/f(v) - v + c.
solve tany dy/dx=sin(x+y)+sin(x+y)
→=
sin(x+y)+sin(x-y)
____________
tany
=[te]\frax{2sinxcosy}{tany}[/tex]
→dy=2sin x dx
→[tex]\frac{siny}{cos²ydy}=2sin x dx
integrating we get→
siny
____ = 2sin x dx
cos²ydy
so required solution is →1/cos y=c-2 cos