Math, asked by WeddingCeremony, 5 months ago

Solve:-
(2x + 3)^{2}  \:  +  \: (2x + 3)^{2}  \:  =  \: (8x + 6) \: (x - 1) \:  + 22

Answers

Answered by thebrainlykapil
100

\large\underline{ \underline{ \sf \maltese{ \: Question:- }}}

Solve:-

(2x + 3)^{2} \: + \: (2x + 3)^{2} \: = \: (8x + 6) \: (x - 1) \: + 22

━━━━━━━━━━━━━━━━━━━━━━━━━

\large\underline{ \underline{ \sf \maltese{ \: Solution:- }}}

Use ( a + b )² + ( a - b )² = 2(a + b )² on LHS

 \\ \\ \\

{:}\longrightarrow \sf{(2x + 3)^{2} \: + \: (2x + 3)^{2} \: = \: (8x + 6) \: (x - 1) \: + 22 }\\ \\

 {:} \longrightarrow \sf{\sf{2( {2x}^{2}  \:  +  \:  {3}^{2}) \:  =  \: x(8x + 6) \:  - (8x + 6) \:  +  \: 22  }}\\ \\

 {:} \longrightarrow \sf{\sf{2( {4x}  \:  +  \:  {9}) \:  =  \: 8 {x}^{2}  + 6x\:  -  \: 8x + 6 \:  +  \: 22  }}\\ \\

 {:} \longrightarrow \sf{\sf{8 {x}^{2}  \:  + 18 \:  =  \: 8 {x}^{2}  - 2x \:  +  16  }}\\ \\

 {:} \longrightarrow \sf{\sf{8 {x}^{2}  \:   -  \: 8 {x}^{2} \: + 2x   \: =  \: 16 \:  -  \: 18  }}\\ \\

 {:} \longrightarrow \sf{\sf{2x \:  =  \:  - 2 }}\\ \\

 {:} \longrightarrow \sf{\sf{x \:  =  \:  \cancel \frac{ - 2}{2}   }}

\qquad\quad {:} \longrightarrow \underline \red{\boxed{\sf{x \: = \: -1  }}}

━━━━━━━━━━━━━━━━━━━━━━━━━

\begin{gathered}\begin{gathered}\qquad \therefore\: \sf{ Solution \: of \: given \: equation \: = \underline {\underline{ -1}}}\\\end{gathered}\end{gathered}

━━━━━━━━━━━━━━━━━━━━━━━━━

More to know:-

Some Important Algebraic Identities:-

\boxed{\begin{minipage}{7 cm}\boxed{\bigstar\:\:\textbf{\textsf{Algebric\:Identity}}\:\bigstar}\\\\1)\bf\:(A+B)^{2} = A^{2} + 2AB + B^{2}\\\\2)\sf\: (A-B)^{2} = A^{2} - 2AB + B^{2}\\\\3)\bf\: A^{2} - B^{2} = (A+B)(A-B)\\\\4)\sf\: (A+B)^{2} = (A-B)^{2} + 4AB\\\\5)\bf\: (A-B)^{2} = (A+B)^{2} - 4AB\\\\6)\sf\: (A+B)^{3} = A^{3} + 3AB(A+B) + B^{3}\\\\7)\bf\:(A-B)^{3} = A^{3} - 3AB(A-B) + B^{3}\\\\8)\sf\: A^{3} + B^{3} = (A+B)(A^{2} - AB + B^{2})\\\\\end{minipage}}

━━━━━━━━━━━━━━━━━━━━━━━━━

Request:-

  • If you want to see more to know section then open this answer on website that is brainly.in

━━━━━━━━━━━━━━━━━━━━━━━━━

Answered by Anonymous
1

Answer:

━━━━━━━━━━━━━

\large\underline{ \underline{ \sf \maltese{ \: Solution:- }}} </p><p>✠Solution:−</p><p>	</p><p> </p><p>	</p><p> </p><p></p><p>Use ( a + b )² + ( a - b )² = 2(a + b )² on LHS</p><p>\begin{gathered} \\ \\ \\ \end{gathered}

Step-by-step explanation:

mark as brainlist

Similar questions