Math, asked by manoramaaigal, 11 months ago

solve :
49 ^{x + 4 }  \\  = 7 ^{2} (343)^{x + 1}  \\

Answers

Answered by Anonymous
9

Answer :-

Value of x is 3.

Explanation :-

 \mathsf{ 49^{x + 4}  =  7^2(343^{x + 1})  } \\  \\ \\

 \mathsf{ \implies ( 7^2) ^{x + 4}  =  7^2 \{( 7^3) ^{x + 1} \} } \\  \\  \\

 \mathsf{ \implies  7^{2(x + 4)}  =  7^2 \{( 7^{3(x + 1)} \} } \\  \\ \\

 \boxed{ \bf  \because ( {a}^{m})^n =  {a}^{mn} } \\  \\  \\

 \mathsf{ \implies  7^{2x + 8}  =  7^2 ( 7^{3x + 3} ) } \\  \\  \\

 \mathsf{ \implies  7^{2x + 8}  =  7^{2 + 3x + 3} } \\  \\  \\

 \boxed{ \bf  \because  {a}^{m} \times a^n =  {a}^{m + n} } \\  \\ \\

 \mathsf{ \implies  7^{2x + 8}  =  7^{3x + 5} } \\  \\ \\

 \mathsf{ \implies 2x + 8 = 3x + 5} \\  \\ \\

 \boxed{ \bf if \ \because  {a}^{m} =  a^n  \ then  \ m = n} \\  \\ \\

 \mathsf{ \implies 8 - 5=  3x  - 2x}  \\  \\ \\

 \mathsf{ \implies 3 =   x}  \\  \\ \\

 \mathsf{ \implies x = 3}  \\  \\  \\

the value of x is 3.

Answered by DhanyaDA
4

Given

 {49}^{(x + 4)}  =  {7}^{2}  \times  {343}^{(x + 1)}

To find

The value of x

EXPLANATION

 =  >  {49}^{(x + 4)}  =  {7}^{2}   \times  {343}^{(x + 1)}

 =  >  {7}^{2  ^ {(x + 4)} }  =  {7}^{2}   \times {7}^{3 ^{(x + 1)}}

\underline {\bf {a^{m}}^{n}=a^{mn}}

Using the formula

 =  >  {7}^{2(x + 4)}  =  {7}^{2}   \times  {7}^{3(x + 1)}

 =  >  {7}^{(2x + 8)}  =  {7}^{2}  \times  {7}^{(3x + 3)}

\underline{\bf a^m×a^n=a^{m+n}}

  =  > {7}^{(2x + 8)}  =  {7}^{(2 + 3x + 3)}  \\  \\  =  >   {7}^{(2x + 8)}  =  {7}^{(3x + 5)}

\underline{\bf a^m=a^n \:then \: m=n}

Equating the powers

 =  > 2x + 8 = 3x + 5

 =  >  - x =  - 3

 =  > x = 3

\boxed {\sf x=3}

Important formulas

 =  >  {a}^{m}  \times  {a}^{n}  =  {a}^{m + n}

 =  >  \dfrac{ {a}^{m} }{ {a}^{n} }  =  {a}^{m - n}

  =  > {a}^{0}  = 1

=>a^{-m}=\dfrac{1}{a^m}

Similar questions