Math, asked by chaudharyneeraj97633, 4 months ago

solve :-
(5 -  \sqrt{2} ) \:  \:  \ \: (5 +  \sqrt{2)}

Answers

Answered by Anonymous
56

question :-

 \bold{( \: 5 - \sqrt{2} \:  ) \: \: \ \: ( \: 5 + \sqrt{2)} \:}

\bold{\bigstar  \:  \:  \: \: by \: using \: identity \: .}

\boxed {(a \:  -  \: b {)} \: (a \:  +  \: b)  \: =  \:  {a}^{2} \:  -  \:  {b}^{2}}

Solution :-

\bold{:\longrightarrow \:  \:  \:  \: (\: 5 - \sqrt{2} \:  ) ( \: 5 + \sqrt{2}) \:  =  \: (5)^{2} \:  -  \: ( \sqrt{2})^{2}  }

\bold{:\longrightarrow \:  \: \:   \: 2 5 - 2 \:  }

\bold{:\longrightarrow   \:  \:  \: \: 23}

Final Answer :-

\bold{:\longrightarrow  \:  \:  \:  \: 23}

Note :-

Here

\bold{:\longrightarrow \:\:\:\:a\:=\:5}

\bold{:\longrightarrow \:\:\:\:b\:=\:\sqrt{2}}


Anonymous: this is inform you don't talk here private massages are allowed.
Anonymous: Only queries and for appreciate
Answered by manissaha129
8

Answer:

23 is the right answer.

Step-by-step explanation:

(5 -  \sqrt{2} )(5 +  \sqrt{2} ) \\  =  {(5)}^{2}  -  {( \sqrt{2}) }^{2}  \\  = 25 - 2 \\  =  \boxed{23}

Formula used :-----

(x - y)(x + y) =  {x}^{2}  -  {y}^{2}

Similar questions