Math, asked by King3247, 6 months ago

Solve
5x +  \frac{7}{2}  =  \frac{3}{2} x - 14

Answers

Answered by suprabhapurvey
6

Answer:

5

Step-by-step explanation:

5x +  \frac{7}{2}  =  \frac{3}{2} x - 14  \\  \frac{7}{2}  + 14 = 5x -  \frac{3}{2} x \\  \frac{7 + 28}{2}  =  \frac{10x - 3x}{2}  \\  \frac{35}{2}  =  \frac{7x}{2}  \\  \frac{35}{2}  \times 2 = 7x \\ 35 = 7x \\ x =  \frac{35}{7}  = 5

Answered by Anonymous
96

\large\frak{\underline{\underline{\red{Solution:-}}}}

Multiply both sides of the equation by 2:

\pink{\longrightarrow\:} \sf{\bold{2 \times (5x+\dfrac{7}{2})=2 \times (\dfrac{3}{2}  x-14)}}

\pink{\longrightarrow\:} \sf{\bold{(2 \times 5x)+(2 \times \dfrac{7}{2} )=(2 \times \dfrac{3}{2} x)-(2 \times 14)}}

\pink{\longrightarrow\:} \sf{\bold{10x-3x=-28-7}}

\pink{\longrightarrow\:} \sf{\bold{7x+7=-28}}

\pink{\longrightarrow\:} \sf{\bold{7x=-28-7}}

\pink{\longrightarrow\:} \sf{\bold{7x=-35}}

\pink{\longrightarrow\:} \sf{\bold{x=\dfrac{-35}{7} }}

\pink{\longrightarrow\:} \sf{\bold{x=-5}}

To check :-

❍ L.H.S

\purple{\longrightarrow\:} \sf{\bold{5x+\dfrac{7}{2} }}

\purple{\longrightarrow\:} \sf{\bold{5(-5)+\dfrac{7}{2}  }}

\purple{\longrightarrow\:} \sf{\bold{-25+\dfrac{7}{2}   }}

\purple{\longrightarrow\:} \sf{\bold{\dfrac{-50+7}{2}  }}

\purple{\longrightarrow\:} \sf{\bold{\dfrac{-43}{2}  }}

❍ R.H.S

\blue{\longrightarrow\:} \sf{\bold{\dfrac{3x}{2} -14 }}

\blue{\longrightarrow\:} \sf{\bold{\dfrac{3(-5)}{2} -14 }}

\blue{\longrightarrow\:} \sf{\bold{\dfrac{-15-28}{2} }}

\blue{\longrightarrow\:} \sf{\bold{\dfrac{-43}{2} }}

\sf{\bold{\therefore LHS = RHS}}

Hence Verified ! ✔

________________________________

Similar questions
Math, 3 months ago