Math, asked by karthikkura007, 11 months ago

Solve ;)
 {7}^{1 + x}  +  {7}^{1 - x}  = 50

Answers

Answered by CopyThat
24

Answer:

x=-1\;or\;1

Step-by-step explanation:

Given :-

7^1^+^x+7^1^-^x\;=\;50

To find :-

x

Solution :-

We can write 7^1^+^x+7^1^-^x\;=\;50 as,

7.7^x+\frac{7}{7^x}-50\;=\;0

That is,

7.7^x7^x+7-50.7^x\;=\;0

7.7^2^x-50.7^x+7\;=\;0

Take 7^x\;=\;t

7t^2-50t+7\;=\;0

7t^2-49t-t+7\;=\;0

7t(t-7)-1(t-7)\;=\;0

(7t-1)(t-7)\;=\;0

t=\frac{1}{7}\;or\;t=7 are the roots of the above equation.

So, we get,

7^x=\frac{1}{7}\;or\;7^x=7

7^x=7^-^1\;or\;7^x=7^1

x=-1\;or\;1

Similar questions