Math, asked by EconomistsBoy, 6 months ago

solve:-
 {7x}^{2} + 5x + 3
______❤♥️❤♥️♥️❤❤❤☺☺☹☹☹⚡⚡✔✔

Answers

Answered by Anonymous
133

Solution :-

By using quadratic formula

\implies \underline{ \boxed{\bf x = \dfrac{ - b\pm \sqrt{ {b}^{2} - 4ac} }{2a}}}

Here

a = 7

b = 5

c = 3

Substitute values in formula

\begin{gathered}\implies \sf x = \dfrac{ - 5\pm \sqrt{ {5}^{2} - 4 \times 7 \times 3} }{2 \times 7} \\ \\ \implies \sf x = \dfrac{ - 5\pm \sqrt{25 - 63} }{21} \\ \\ \implies \sf x = \dfrac{ - 5\pm \sqrt{ - 35} }{21}\end{gathered}

Talking +ve sign

\implies \sf x = \dfrac{ - 5 - \sqrt{ 35} }{21}

Taking - ve sign

\implies \sf x = \dfrac{ - 5 + \sqrt{ 35} }{21}

Answered by xxprincessxx678999
2

Step-by-step explanation:

Solution :-

By using quadratic formula

\implies \underline{ \boxed{\bf x = \dfrac{ - b\pm \sqrt{ {b}^{2} - 4ac} }{2a}}}⟹

x=

2a

−b±

b

2

−4ac

Here

a = 7

b = 5

c = 3

Substitute values in formula

\begin{gathered}\begin{gathered}\implies \sf x = \dfrac{ - 5\pm \sqrt{ {5}^{2} - 4 \times 7 \times 3} }{2 \times 7} \\ \\ \implies \sf x = \dfrac{ - 5\pm \sqrt{25 - 63} }{21} \\ \\ \implies \sf x = \dfrac{ - 5\pm \sqrt{ - 35} }{21}\end{gathered}\end{gathered}

⟹x=

2×7

−5±

5

2

−4×7×3

⟹x=

21

−5±

25−63

⟹x=

21

−5±

−35

Talking +ve sign

\implies \sf x = \dfrac{ - 5 - \sqrt{ 35} }{21}⟹x=

21

−5−

35

Taking - ve sign

\implies \sf x = \dfrac{ - 5 + \sqrt{ 35} }{21}⟹x=

21

−5+

35

Similar questions