Math, asked by Anonymous, 12 hours ago

solve   \displaystyle\lim \limits_{x\to0}\dfrac{\sin4x}{\sin2x}}

Answers

Answered by Anonymous
7

To solve :-

  \displaystyle  \rm \implies\lim \limits_{x\to0} \: \dfrac{\sin4x}{\sin2x}

‎ ‎ ‎

Solution :-

If we try to solve the given limit by the method of substituting to directly substitute value of x = 0, we get :

\leadsto\rm \dfrac{\sin 4x}{\sin 2x} = \dfrac{\sin 0}{\sin 0}=\dfrac{0}{0}

This quantity is meaningless or indeterminate, so substitution method failed.

Let's try another method !

  \displaystyle  \rm \longrightarrow\lim \limits_{x\to0} \: \dfrac{\sin4x}{\sin2x}

Multiply both numerator and denominator with  4x.

  \displaystyle  \rm \longrightarrow\lim \limits_{x\to0} \: \dfrac{\sin4x}{\sin2x} \times  \frac{4x}{4x}

  \displaystyle  \rm \longrightarrow\lim \limits_{x\to0} \: \left[\dfrac{\sin4x}{4x} \times  \frac{4x}{sin \:  2x} \right]

  \displaystyle  \rm \longrightarrow\lim \limits_{x\to0} \: \left[\dfrac{\sin4x}{4x} \times  \frac{2x}{sin \:  2x}  \times 2\right]

  \displaystyle  \rm \longrightarrow2 \times \lim \limits_{x\to0} \: \left[\dfrac{\sin4x}{4x} \times  \frac{2x}{sin \:  2x}  \right]

  \displaystyle  \rm \longrightarrow2 \times \lim \limits_{x\to0} \: \left[\dfrac{\sin4x}{4x}  \div   \frac{ \sin 2x}{  2x}  \right]

  \displaystyle  \rm \longrightarrow2 \times \lim \limits_{x\to0} \: \left[\dfrac{\sin4x}{4x} \right] \div   \left[\frac{ \sin 2x}{  2x}  \right]

  \displaystyle  \rm \longrightarrow2 \times \lim \limits_{x\to0} \: \left[\dfrac{\sin4x}{4x} \right] \div    \lim \limits_{x\to0}\left[\frac{ \sin 2x}{  2x}  \right]

‎ ‎ ‎

Now as we know that,

since x is approaching to 0 in both the limits, 4x and 2x will also approach to 0.

  • x\to 0 \implies 4x\to0
  •  x\to 0 \implies 2x \to 0

[ By multiplying both sides by 4 and 2 respectively ]

We get . . .

  \displaystyle  \rm \longrightarrow2 \times \lim \limits_{4x\to0} \: \left[\dfrac{\sin4x}{4x} \right] \div    \lim \limits_{2x\to0}\left[\frac{ \sin 2x}{  2x}  \right]

‎ ‎ ‎ ‎ ‎

Apply formula :-

\boxed{\displaystyle\rm{\purple{\lim\limits_{x\to0}\:\left[\dfrac{sin x}{x}\right] = 1 }}}

We get . . .

  \displaystyle  \rm \longrightarrow2 \times\: \left[1 \right] \div\left[1 \right]

  \displaystyle  \rm \longrightarrow2

‎ ‎ ‎

Hence,

  \displaystyle  \rm \longrightarrow \underline{ \underline{\lim \limits_{x\to0} \:\left[ \dfrac{\sin4x}{\sin2x} \right]= 2}}

Answered by MrImpeccable
13

ANSWER:

To Solve:

  •  \displaystyle\lim_{x\to0}\dfrac{\sin4x}{\sin2x}

Solution:

We are given that,

 \displaystyle\implies\lim_{x\to0}\dfrac{\sin4x}{\sin2x}

Solving limit, by substituting the value of x as 0,

 \displaystyle \implies \dfrac{\sin4(0)}{\sin2(0)}

 \displaystyle \implies \dfrac{\sin0}{\sin0}

We know that sin 0 = 0.

So,

 \displaystyle \implies \dfrac{0}{0}

As 0/0 is an indefinite form, we need to modify our fraction.

METHOD 1: USING TRIGONOMETRIC IDENTITY

So, we had,

 \displaystyle \implies \lim_{x\to0}\dfrac{\sin4x}{\sin2x}

We know that,

\hookrightarrow \implies \sin2\theta=2\sin\theta\cos\theta

Using this formula in numerator,

 \displaystyle \implies \lim_{x\to0}\dfrac{\sin4x}{\sin2x}

 \displaystyle \implies \lim_{x\to0}\dfrac{2\sin2x\cos2x}{\sin2x}

Cancelling sin2x,

 \displaystyle \implies \lim_{x\to0}2\cos2x

Solving limit, by substituting the value of x as 0,

 \displaystyle \implies 2\cos2(0)

 \displaystyle \implies 2\cos0

We know that cos 0 = 1

 \displaystyle \implies 2(1)

 \displaystyle\bf \implies 2

METHOD 2: USING SPECIAL FORMULAE

So, we had,

 \displaystyle \implies \lim_{x\to0}\dfrac{\sin4x}{\sin2x}

Multiplying and dividing 2x and 4x both,

 \displaystyle \implies \lim_{x\to0}\dfrac{\sin4x}{\sin2x}\times\dfrac{2x}{2x}\times\dfrac{4x}{4x}

On rearranging,

 \displaystyle \implies \lim_{x\to0}\dfrac{\sin4x}{4x}\times\dfrac{2x}{\sin2x}\times\dfrac{4x}{2x}

We know that,

\hookrightarrow \lim_{h\to0}\dfrac{\sin h}{h} = 1

So,

 \displaystyle \implies \lim_{x\to0}\dfrac{\sin4x}{4x}\times\dfrac{2x}{\sin2x}\times2

Solving limit,

 \displaystyle \implies 1\times1\times2

 \displaystyle\bf \implies 2

\\

Hence,

 \displaystyle\bf\implies\lim_{x\to0}\dfrac{\sin4x}{\sin2x}=2

Similar questions