Math, asked by Talpadadilip783, 16 days ago




Solve  \displaystyle\rm \: xy \frac{dy}{dx} = y + 2 given that x=2 when y=1.
\\ \rule{300pt}{0.1pt}

༒ Bʀᴀɪɴʟʏ Sᴛᴀʀs

༒Mᴏᴅᴇʀᴀᴛᴇʀs

༒Other best user​

Answers

Answered by PharohX
5

 \large \mathbb{ \green{GIVEN :  - }}

 \displaystyle\rm \: xy \frac{dy}{dx} = y + 2

 \displaystyle\rm \: And \:  \: x = 2 \:   \:  \: \: y = 1

 \large \mathbb{ \green{SOLUTION :  - }}

 \displaystyle\rm \rightarrow \: xy \frac{dy}{dx} = y + 2

 \displaystyle\rm \rightarrow \:  \frac{y.dy}{(y + 2)} =  \frac{dx}{x}

 \displaystyle\rm \rightarrow \:  \frac{(y + 2 - 2).dy}{(y + 2)} =  \frac{dx}{x}

 \displaystyle\rm \rightarrow \:   \frac{(y + 2)dy}{(y + 2)} -  \frac{2dy}{(y + 2)} =  \frac{dx}{x}

 \displaystyle\rm \rightarrow \: dy -  \frac{2.dy}{(y + 2)} =  \frac{dx}{x}

 \rm \: On  \: integrating  \: both  \: side

 \displaystyle\rm \rightarrow \:  \int \bigg(dy -  \frac{2.dy}{(y + 2)} \bigg) = \int  \frac{dx}{x}

 \displaystyle\rm \rightarrow \: y -  2 \:  log(y + 2)  =   log(x)  +  log(c)

 \displaystyle \pink{\rm  \: at \: \:  \: x = 2 \:   \:  \: \: y = 1}

 \displaystyle\rm \rightarrow \: 1 -  2 \:  log(1 + 2)  =   log(2)  +  log(c)

 \displaystyle\rm \rightarrow \: 1 -  2 \:  log(3)  =   log(2)  +  log(c)

 \displaystyle\rm \rightarrow \: 1 -   \:  log( {3}^{2} )   - log(2)   =  log(c)

 \displaystyle\rm \rightarrow \:  log(e) -   \:  log( 9 )   - log(2)   =  log(c)

 \displaystyle\rm \rightarrow \:  log \bigg( \frac{e}{2 \times 9}  \bigg)    =  log(c)

 \displaystyle\rm \rightarrow \:   log(c) =   log(\frac{e}{18} )

 \displaystyle\rm \rightarrow \: y -  2 \:  log(y + 2)  =   log(x)  +  log( \frac{e}{18} )

 \displaystyle \boxed{\rm \rightarrow \: y   =   log \bigg( \frac{ex  {(y + 2)}^{2}}{18}  \bigg)  }

Similar questions