Science, asked by thapaavinitika6765, 8 months ago

Solve foci\:\frac{\left(x-1\right)^2}{9}+\frac{y^2}{5}=100

Answers

Answered by Anonymous
1

\mathrm{Ellipse\:foci\:given}\:\frac{\left(x-1\right)^2}{9}+\frac{y^2}{5}=100

\left(h+c,\:k\right),\:\left(h-c,\:k\right)

Calculate\:ellipse\:properties

\frac{\left(x-1\right)^2}{9}+\frac{y^2}{5}=100:\quad \mathrm{Ellipse\:with\:center}\:\left(h,\:k\right)=\left(1,\:0\right),\:\mathrm{semi-major\:axis}\:a=30,\:\mathrm{semi-minor\:axis}\:b=10\sqrt{5}

\left(1+c,\:0\right),\:\left(1-c,\:0\right)

\mathrm{Compute}\:c:

c=\sqrt{30^2-\left(10\sqrt{5}\right)^2}

=20

\left(1+20,\:0\right),\:\left(1-20,\:0\right)

\mathrm{Refine}

\left(21,\:0\right),\:\left(-19,\:0\right)

Answered by Anonymous
0

Explanation:

 \sf  \to\:\frac{\left(x-1\right)^2}{9}+\frac{y^2}{5}=100 \\  \\  \sf \to \:  \frac{ {x}^{2} - 2x + 1 }{9}  +  \frac{ {y}^{2} }{5}  = 100 \\  \\  \sf \to \:  \frac{ {x}^{2}  - 2x + 1 + 9 {y}^{2}  }{9}  = 500 \\   \:  \\  \sf \to \: {x}^{2}  - 2x + 1 + 9 {y}^{2}  = 4500 \\  \\ \sf \to \red{ {x}^{2} +   {9y}^{2}  - 2x - 4999}

Similar questions