Math, asked by Anonymous, 2 months ago

Solve :—

 \frac{1}{1}  +  \frac{1}{ 1 + 2}  +  \frac{1}{1 + 2 + 3}  + .. \: .. \: .. +  \frac{1}{1 + 2 + 3 + .. \: .. \: .. + 15}

Answers

Answered by Anonymous
0

Step-by-step explanation:

girls interested  jöin:-qee-nztr-svy

Answered by ItZzKhushi
1

{\huge{\underbrace{\overbrace{\color{aqua}{Qᴜᴇsᴛɪᴏɴ}}}}}

Solve :—

\frac{1}{1} + \frac{1}{ 1 + 2} + \frac{1}{1 + 2 + 3} + .. \: .. \: .. + \frac{1}{1 + 2 + 3 + .. \: .. \: .. + 15}

\huge\colorbox{skyblue}{❥Aɴsᴡᴇʀ}

➪ T1 =  \frac{1}{1}  \\ \\  ➪ T2 =  \frac{1}{1 + 2}  \\  \\ ➪ T3 =  \frac{1}{1 + 2 +  3}  \\ ⇓ \\ ⇓ \\ ⇓ \\ ➪Tn =  \frac{1}{1 + 2 + 3 + .. \: .. \: .. + n}  =   \\   \\ = \frac{1}{summation \: of \: n}  \\  \\   = \frac{2}{n(n + 1)}

⇒2[ \frac{1}{n}  -  \frac{1}{n + 1}]

⇒S15 = T1 + T2 +T3 +.. .. .. .. .. +T15

⇒2 [\frac{1}{1}  -  \frac{1}{2} )2( \frac{1}{2}  -  \frac{1}{3} ) + 2( \frac{1}{3}  -  \frac{1}{4} ).. \: .. \:  + 2( \frac{1}{15}  -  \frac{1}{16} ]

⇒2[\frac{1}{1}  -  \frac{1}{2}  +  \frac{1}{2}  -  \frac{1}{3}  +  \frac{1}{3}  -  \frac{1}{4} .. \: .. \: .. +  \frac{1}{15}  -  \frac{1}{16}]

⇒2[1 -  \frac{1}{16} ]

⇒ \cancel2 \times  \frac{15}{ \cancel{16} }

⇒ \frac{15}{8}

Similar questions