Math, asked by solvejakulamaja, 4 months ago

Solve:
 \frac{1}{2} (x -  \frac{2}{3}) +  \frac{1}{6} (x -  \frac{5}{2}) =  \frac{1}{5} (2x -  \frac{1}{6} ) \\

Answers

Answered by Anonymous
4

GIVEN :-

 \\  \sf \:  \dfrac{1}{2}  \left(x -  \dfrac{2}{3}  \right) +  \dfrac{1}{6}  \left(x -  \dfrac{5}{2}  \right) =  \dfrac{1}{5}  \left(2x -  \dfrac{1}{6}  \right) \\  \\

TO FIND :-

  • Value of x.

 \\

SOLUTION :-

 \\  \sf \:  \dfrac{1}{2}  \left(x -  \dfrac{2}{3}  \right) +  \dfrac{1}{6}  \left(x -  \dfrac{5}{2}  \right) =  \dfrac{1}{5}  \left(2x -  \dfrac{1}{6}  \right) \\    \\  \\  \sf \implies \:  \dfrac{1}{2}  \left(  \dfrac{3x - 2}{3} \right) +  \dfrac{1}{6} \left(  \dfrac{2x - 5}{2} \right) =  \dfrac{1}{5} \left(  \dfrac{2x(6) - 1}{6} \right) \\  \\  \\  \implies \sf \:  \dfrac{3x - 2}{6}  +  \dfrac{2x - 5}{12}  =  \dfrac{12x - 1}{30}  \\  \\

Multiplying whole equation by 6,

 \\  \\  \implies \sf \:  \cancel6\left(  \dfrac{3x - 2}{ \cancel6} \right) +  \cancel6\left( \dfrac{2x - 5}{ \cancel{12}}  \right) =  \cancel6\left(  \dfrac{12x - 1}{ \cancel{30}} \right) \\  \\  \\  \implies \sf \: 3x - 2 +  \dfrac{2x - 5}{2}  =  \dfrac{12x - 1}{5}  \\  \\

   \implies \sf \: 3x +  \dfrac{2x - 5}{2}  -  \dfrac{12x - 1}{5} = 2 \\  \\  \\  \implies \sf \:  \dfrac{10(3x) + 5(2x - 5) - 2(12x - 1)}{10}   = 2 \\  \\  \\  \implies \sf \: 30x + 10x - 25 - 24x + 2 = 20 \\   \\ \\  \implies \sf \: 16x = 20 - 2 + 25 \\   \\ \\  \implies \sf \: 16x = 43 \\  \\  \\  \implies \sf \: x =  \dfrac{43}{16}  \\   \\ \\  \implies  \underline{\boxed{ \mathfrak{ x =  \frac{43}{16} }}} \\  \\

Answered by Anonymous
17

Solution :

\frac{1}{2} (x - \frac{2}{3}) + \frac{1}{6} (x - \frac{5}{2}) = \frac{1}{5} (2x - \frac{1}{6} ) \\  \\  \Longrightarrow \:  \:  \frac{1}{2} (x -  \frac{2}{3}) +  \frac{1}{6}(x -  \frac{5}{2}) =  \frac{1}{5} (2x -  \frac{1}{6} ) \\  \\ \Longrightarrow \:  \:  \frac{1}{2} ( \frac{3x - 2}{3} ) +  \frac{1}{6} ( \frac{2x - 5}{2} ) =  \frac{1}{5}  (\frac{12x - 1}{30} ) \\  \\   \ \Longrightarrow \:  \:  \frac{3x - 2}{6}  +  \frac{2x - 5}{12}  =  \frac{12x - 1}{30}

LCM of 6,12,30 = 60

Multiplying both side of the equation by 60 we get

60( \frac{3x - 2}{6} ) + 60( \frac{2x - 5}{12} ) = 60( \frac{12x - 1}{30} ) \\  \\  \longrightarrow \:  \: 30x - 20 + 10x - 25 = 24x - 2 \\  \\  \longrightarrow \:  \: 40x - 45 = 24x - 2 \\  \\  \longrightarrow \:  \: 40x - 24x =  - 2 + 45 \\  \\  \longrightarrow \:  \: 16x = 43 \\  \\  \longrightarrow \:  \: x =  \frac{43}{16}

Similar questions