Math, asked by AnmolJain990, 1 month ago

Solve
 \frac{1}{(a+b + x}  =  \frac{1}{a}  +  \frac{1}{b}  +  \frac{1}{x} ,[x \neq0,x \neq - (a + b)] \\

Answers

Answered by BrainlyTwinklingstar
1

Answer

\dashrightarrow \sf \: \dfrac{1}{(a+b + x)} = \dfrac{1}{a} + \dfrac{1}{b} + \dfrac{1}{x}

\sf \dashrightarrow \dfrac{1}{(a + b + x)} - \dfrac{1}{x} = \dfrac{1}{a} + \dfrac{1}{b}

\sf \dashrightarrow \dfrac{x - (a + b + x)}{x \: (a + b + x)} = \dfrac{b + a}{ab}

\sf \dashrightarrow \dfrac{- (a + b)}{x \: (a + b + x)} = \dfrac{(a + b)}{ab}

On dividing both sides by (a + b),

{\sf \dashrightarrow \dfrac{-1}{x (a + b + x)} = \dfrac{1}{ab}}

By cross multiplication,

\sf \dashrightarrow x (a + b + x) = - ab

\sf \dashrightarrow {x} ^{2} + ax + bx + ab = 0

\sf \dashrightarrow x (x + a) + b (x + a) = 0

\sf \dashrightarrow (x + a) (x + b) = 0

\sf \dashrightarrow x + a = 0 \: \: or \: \: x + b =0

\sf \dashrightarrow x = - a \: \: or \: \: x = - b

Thus, - a and - b are the roots of the given equation.

Similar questions