Math, asked by Priyanka899111, 7 months ago

Solve:

 \frac{12}{7} (x - 5) = 24 + 8x

Answers

Answered by Anonymous
48

━━━━━━━━━━━━━━━━━━━━━━━━━

\huge\purple{\mid{\fbox{\tt{ANSWER}}\mid}}

━━━━━━━━━━━━━━━━━━━━━━━━━

\large \bold{\underline{\sf{\blue{We\:Have,}}}}

 \frac{12}{7} (x - 5) = 24 + 8x

Multiplying both sides by 7,we get

7 \times  \frac{12}{7} (x - 5) = 7 \times (24 + 8x) \\</em><em>

12(x - 5) = 7(24 + 8x) \\ </em><em>⇨</em><em>12x - 60 = 168 + 56x \\ </em>⇨<em>12x - 56x = 168 + 60 \\ </em><em>⇨</em><em> - 44x = 228 \\ </em><em>⇨</em><em> \frac{ - 44x}{ - 44}  =  \frac{228}{ - 44}  \\ </em><em>⇨</em><em>x =  \frac{ - 57}{11}

thus \: x =  \frac{ - 57}{11}  \: is \: the \: solution \: of \: the \: given \: equation. \\

━━━━━━━━━━━━━━━━━━━━━━━━━

\large \bold{\underline{\sf{\blue{</em><em>Check</em><em>}}}}

substituting \: x =  \frac{ - 57}{11}  \: in \: the \: given \: equation \: we \: get \:  \\

L.H.S =  \frac{12}{7} (x - 5) \\ ⇨ \frac{12}{7} \times ( \frac{ - 57}{11}  - 5) \\ ⇨ \frac{12}{7}  \times ( \frac{ - 57 - 55}{11 }  =  \frac{12}{7}  \times  -  \frac{112}{11}  = 12 \times -   \frac{16}{11}  =  -  \frac{192}{11}  \\

And,

</em><em>R.</em><em>H</em><em>.</em><em>S</em><em> \:  = 24 + 8x \\</em>⇨<em> 24 + 8 \times  -  \frac{57}{11} = 24 -  \frac{456}{11}   =  \frac{24 \times 11 - 456}{11}  =  \frac{264 - 456}{11}  =  -  \frac{192}{11}

thus \: lhs = rhs \: for \: x =  -  \frac{57}{11}

━━━━━━━━━━━━━━━━━━━━━━━━━

{\huge{\underline{\small{\mathbb{\blue{HOPE\:HELP\:U\:BUDDY :)}}}}}}

{\huge{\underline{\small{\mathbb{\pink{</p><p>~AngelicCandy♡ :)}}}}}}

Answered by Anonymous
24

Question :-

  •  \dfrac{12}{7} (x - 5) = 24 + 8x

Solution :-

{⟼\: \dfrac{12}{7}\:(x-5)} = 24+8x

{⟼\: \dfrac{12x}{7}\:-\: \dfrac{60}{7}\:=\:24+8x}

{⟼\: \dfrac{12x}{7}\:-\:8x\:=\:24+ \dfrac{60}{7}}

{⟼\: \dfrac{12x-56x}{7}\:=\: \dfrac{168+60}{7}}

{⟼\: \dfrac{-44x}{7}\:=\: \dfrac{228}{7}}

{⟼\:-x\:=\: \dfrac{228}{7}\:×\: \dfrac{7}{49}}

{⟼\:-x\:=\: \dfrac{57}{11}}

{\boxed{\large{\bold{x\:=\: \dfrac{-57}{11}}}}}

Similar questions