Math, asked by Anonymous, 4 months ago

Solve :-

 \frac{2}{3} (5x + 4) - [ \: 6x -  \frac{1 + x}{3} ] =  \frac{x}{3}  +  \frac{1}{3}

Answers

Answered by Anonymous
6

Question :-

 \frac{2}{3} (5x + 4) - [6x -  \frac{1 + x}{3} ] =  \frac{x}{3}  +  \frac{1}{3}

Solution :-

\frac{2}{3} (5x + 4) - [ \: 6x - \frac{1 + x}{3} ] = \frac{x}{3} + \frac{1}{3} \\  \\ ⟹  \:  \:  \frac{2}{3} \: (5x + 4) - [6x -  \frac{1 + x}{3} ] =  \frac{x}{3}   \: +  \frac{1}{3}  \\  \\ ⟹  \frac{2}{3} (5x + 4) - [ \frac{18x - 1 - x}{3} ] =  \frac{x + 1}{3}  \\  \\ ⟹  \:  \:  \frac{10x + 8}{3}   -  \:  \frac{17 - 1}{3}  =  \frac{x + 1}{3}

Multiplying both sides by 3 we get :

⟹  \:  \: 10x + 8 - 17x + 1 = x + 1 \\  \\ ⟹  \:  \:  - 7x  + 9 = x + 1 \\  \\ ⟹  - 7x - x = 1 - 9 \\  \\ ⟹  \:  \:  - 8x =  - 8 \\  \\ ⟹  \:  \: x = 1

Similar questions