Math, asked by aryac2904, 9 months ago

solve :
 \frac{2 {}^{x} + 2 {}^{ - x}  }{2 {}^{x} - 2 {}^{ - x}  }  =  \frac{16 {}^{x} + 16 {}^{ - x}  }{16 {}^{x}  - 16 {}^{ - x} }
plz answer fast

Answers

Answered by Anonymous
7

Answer:

\sf{The \ value \ of \ x \ is \ 0.}

Given:

\sf{\leadsto{\dfrac{2^{x}+2^{-x}}{2^{x}-2^{-x}}=\dfrac{16^{x}+16^{-x}}{16^{x}-16^{-x}}}}

To find:

\sf{The \ value \ of \ x.}

Solution:

\sf{\leadsto{\dfrac{2^{x}+2^{-x}}{2^{x}-2^{-x}}=\dfrac{16^{x}+16^{-x}}{16^{x}-16^{-x}}}}

\sf{By \ componendo}

\sf{\leadsto{\dfrac{2(2^{x})}{2^{x}-2^{-x}}=\dfrac{2(16^{x})}{16^{x}-16^{-x}}}}

\sf{By \ invertendo}

\sf{\leadsto{\dfrac{2^{x}-2^{-x}}{2^{x+1}}=\dfrac{16^{x}-+6^{-x}}{2(16^{x})}}}

\sf{But, \ 2^{4}=16 \ substitute \ in \ R.H.S.}

\sf{\leadsto{\dfrac{2^{x}-2^{-x}}{2^{x+1}}=\dfrac{2^{4x}-2^{-4x}}{2(2^{4x})}}}

\sf{\leadsto{\dfrac{2^{x}-2^{-x}}{2^{x+1}}=\dfrac{2^{4x}-2^{-4x}}{2^{4x+1}}}}

\sf{\leadsto{2^{x-x-1}-2^{-x-x-1}=2^{4x-4x-1}-2^{-4x-4x-1}}}

\sf{\leadsto{2^{-1}-2^{-2x-1}=2^{-1}-2^{-8x-1}}}

\sf{\leadsto{2^{-2x-1}=2^{-8x-1}}}

\sf{By \ identity \ If, \ a^{m}=a^{n}, \ then \ m=n}

\sf{\leadsto{-2x-1=-8x-1}}

\sf{\leadsto{6x=0}}

\sf{\leadsto{x=0}}

\sf\purple{\tt{\therefore{The \ value \ of \ x \ is \ 0.}}}

Similar questions