Math, asked by JasmineKaur9991, 7 months ago

Solve:-
 \frac{3}{4} (7x - 1) - (2x -  \frac{1 - x}{2} ) = x +  \frac{3}{2}  \\

Answers

Answered by Anonymous
38

━━━━━━━━━━━━━━━━━━━━━━━━━

\huge\underline\bold\pink{AnSwEr}

━━━━━━━━━━━━━━━━━━━━━━━━━

\huge\underline\bold\orange{We\:Have}

 \frac{3}{4} (7x - 1) - (2x -  \frac{1 - x}{2} ) = x +  \frac{3}{2}  \\

⟹ \frac{3}{4} (7x - 1) - (2x -  \frac{1 - x}{2} ) = x +  \frac{3}{2}  \\

Multiplying multiplying both sides by four the LCM of 4 and 2, we get

3(7x - 1) -  8x + 4( \frac{1 - x}{2} ) = 4(x +  \frac{3}{2}  \\

⟹21x - 3 - 8x + 2 - 2x = 4x + 6 \\

⟹21x - 8x - 2x - 3 + 2 = 4x + 6 \\

⟹11x - 1 = 4x + 6

⟹11x - 4x = 6 + 1

⟹7x = 7

 ⟹\frac{7x}{7}  =  \frac{7}{7}

 ⟹x = 1

\sf{\underline{\underline{\pink{Thus,\:x\:=\:1\:is\:the\:solution\:of\:the\:given\: equation}}}}

━━━━━━━━━━━━━━━━━━━━━━━━━

{\huge{\underline{\small{\mathbb{\blue{HOPE\:HELP\:U\:BUDDY :)}}}}}}

{\huge{\underline{\small{\mathbb{\pink{</p><p>~AngelicCandy♡ :)}}}}}}

Answered by Anonymous
0

━━━━━━━━━━━━━━━━━━━━━━━━━

\huge\underline\bold\pink{AnSwEr}

━━━━━━━━━━━━━━━━━━━━━━━━━

\huge\underline\bold\orange{We\:Have}

 \frac{3}{4} (7x - 1) - (2x -  \frac{1 - x}{2} ) = x +  \frac{3}{2}  \\

⟹ \frac{3}{4} (7x - 1) - (2x -  \frac{1 - x}{2} ) = x +  \frac{3}{2}  \\

Multiplying multiplying both sides by four the LCM of 4 and 2, we get

3(7x - 1) -  8x + 4( \frac{1 - x}{2} ) = 4(x +  \frac{3}{2}  \\

⟹21x - 3 - 8x + 2 - 2x = 4x + 6 \\

⟹21x - 8x - 2x - 3 + 2 = 4x + 6 \\

⟹11x - 1 = 4x + 6

⟹11x - 4x = 6 + 1

⟹7x = 7

 ⟹\frac{7x}{7}  =  \frac{7}{7}

 ⟹x = 1

\sf{\underline{\underline{\pink{Thus,\:x\:=\:1\:is\:the\:solution\:of\:the\:given\: equation}}}}

━━━━━━━━━━━━━━━━━━━━━━━━━

{\huge{\underline{\small{\mathbb{\blue{HOPE\:HELP\:U\:BUDDY :)}}}}}}

{\huge{\underline{\small{\mathbb{\pink{</p><p>~CandyFloss♡ :)}}}}}}

Similar questions