Math, asked by parinitasahu08, 2 months ago

Solve:-
 \frac{(7 {p}^{2} {q}^{9} {r}^{5} {)}^{2}(4pqr) {}^{3}     }{(14 {p}^{6} {q}^{10} {r}^{4} {)}^{2}    }

Answers

Answered by vasundhrakrishnar
0

I have mentioned my answer above please Mark me as brainliest

Attachments:
Answered by mathdude500
1

\large\underline{\sf{Solution-}}

\rm :\longmapsto\:\dfrac{(7 {p}^{2} {q}^{9} {r}^{5} {)}^{2}(4pqr) {}^{3} }{(14 {p}^{6} {q}^{10} {r}^{4} {)}^{2} }

Consider,

\rm :\longmapsto\:(7 {p}^{2} {q}^{9} {r}^{5} {)}^{2}

We know,

 \boxed{ \bf{ {(xy)}^{n}  \: =  \:  {x}^{n}  {y}^{n}}}

So, using this

\rm :\longmapsto\: {7}^{2}  {p}^{4} {q}^{18} {r}^{10}

Hence,

\rm :\longmapsto\:(7 {p}^{2} {q}^{9} {r}^{5} {)}^{2} =  {7}^{2} {p}^{4} {q}^{18} {r}^{10}

Consider,

\rm :\longmapsto\:(4pqr) {}^{3} =  {4}^{3} {p}^{3} {q}^{3} {r}^{3}

Consider,

\rm :\longmapsto\:{(14 {p}^{6} {q}^{10} {r}^{4} {)}^{2} }

\rm  \:  \: =  \: \:{(7 \times 2 \times {p}^{6} {q}^{10} {r}^{4} {)}^{2} }

 \rm \:  =  \:  \:  {7}^{2} {2}^{2} {p}^{12} {q}^{20} {r}^{8}

Hence,

\rm :\longmapsto\:\dfrac{(7 {p}^{2} {q}^{9} {r}^{5} {)}^{2}(4pqr) {}^{3} }{(14 {p}^{6} {q}^{10} {r}^{4} {)}^{2} }

 \rm \:  \:  =  \:\dfrac{ {7}^{2} {p}^{4} {q}^{18} {r}^{10}  \times {4}^{3} {p}^{3} {q}^{3} {r}^{3} }{{7}^{2} {2}^{2} {p}^{12} {q}^{20} {r}^{8}}

We know,

 \boxed{ \bf{  {x}^{m}  \times  {x}^{n} \:  =  \:  {x}^{m + n} }}

So using this, in numerator, we get

 \rm \:  \:  =  \:\dfrac{ {7}^{2} {p}^{4 + 3} {q}^{18 + 3} {r}^{10 + 3}  \times {(2 \times 2)}^{3}  }{{7}^{2} {2}^{2} {p}^{12} {q}^{20} {r}^{8}}

 \rm \:  \:  =  \:\dfrac{ \cancel {7}^{2} {p}^{7} {q}^{21} {r}^{13}  \times {(2)}^{6}  }{ \cancel{7}^{2} {2}^{2} {p}^{12} {q}^{20} {r}^{8}}

We know,

 \boxed{ \bf{  {x}^{m}  \div   {x}^{n} \:  =  \:  {x}^{m - n} }}

 \rm \:  \:  =  \: {p}^{7 - 12} {q}^{21 - 20} {r}^{13 - 8}  {(2)}^{6 - 2}

 \rm \:  \:  =  \: {p}^{ - 5} {q}^{1} {r}^{5}  {(2)}^{4}

\rm \:  \:  =  \:\dfrac{16q {r}^{5} }{ {p}^{5} }

Hence,

\bf :\longmapsto\:\dfrac{(7 {p}^{2} {q}^{9} {r}^{5} {)}^{2}(4pqr) {}^{3} }{(14 {p}^{6} {q}^{10} {r}^{4} {)}^{2} } \:  \:  =  \:\dfrac{16q {r}^{5} }{ {p}^{5} }

Additional Information :-

 \boxed{ \bf{ {x}^{0}  \:  =  \: 1}}

 \boxed{ \bf{ {x}^{ - y}  \:  =  \:  \frac{1}{ {x}^{y} } }}

 \boxed{ \bf{  {x}^{m} \times  {y}^{m}  =  {(xy)}^{m} }}

Similar questions