Science, asked by thapaavinitika6765, 7 months ago

Solve : \frac{d}{dx}\left(\frac{3x+9}{2-x}\right)

Answers

Answered by ram664219
0

Answer:

12x/2x

= 6x Is The answer of This Question

Answered by Anonymous
1

\bf{\dfrac{d}{dx}\left(\dfrac{3x+9}{2-x}\right)=\dfrac{15}{\left(2-x\right)^2}}

SOLUTION :

\mathrm{Apply\:the\:Quotient\:Rule}:\quad \left(\frac{f}{g}\right)^'=\frac{f\:'\cdot g-g'\cdot f}{g^2}

=\frac{\frac{d}{dx}\left(3x+9\right)\left(2-x\right)-\frac{d}{dx}\left(2-x\right)\left(3x+9\right)}{\left(2-x\right)^2}

\frac{d}{dx}\left(3x+9\right)=3

\frac{d}{dx}\left(2-x\right)=-1

=\frac{3\left(2-x\right)-\left(-1\right)\left(3x+9\right)}{\left(2-x\right)^2}

\mathrm{Simplify\:}\frac{3\left(2-x\right)-\left(-1\right)\left(3x+9\right)}{\left(2-x\right)^2}

=\dfrac{15}{\left(2-x\right)^2}

Similar questions