Math, asked by NilotpalSwargiary, 9 months ago

solve:
 \frac{ {sin}^{2} 63 +  {sin}^{2}27 }{ {cos}^{2}17 +  {cos}^{2}73  }

Answers

Answered by tahseen619
3

Answer:

1

Step-by-step explanation:

 \frac{sin {}^{2} 63 + sin ^{2} 27}{sin ^{2} 17 +  {cos}^{2}73 } \\  \\  \frac{sin ^{2} (90 - 27) + {sin}^{2}27  }{ {cos}^{2}(90 - 73) +  {cos}^{2} 73 }   \\  \\  \frac{ {cos}^{2} 27 +  {sin}^{2}27 }{sin ^{2}73 +  {cos}^{2} 73 }  \\  \\  \frac{1}{1}  \\  \\ 1

.

Using Identity

sin²@ + cos²@ = 1

sin (90 - @) = cos @

cos(90 - @) = sin @

Answered by ishwarsinghdhaliwal
1

(sin²63+sin²27)/cos²17+cos²73

=(sin²63+cos²63)/cos²17+sin²17

=1/1

=1

Using sin(90-θ)=cosθ and cos(90-θ)=sinθ

sin²θ+cos²θ= 1

Similar questions