Math, asked by Itzraisingstar, 7 months ago

Solve: \frac{x}{1-x}+\sqrt{\frac{1-x}{x} } = 2\frac{1}{6} ,x\neq 0\:\:and\:\:x\neq 1.

need answer from a moderaor or brainly star or a genius

high quality answer needed no spams

Answers

Answered by Anonymous
15

Correct Question :

Solve :

\bf{\sqrt{\dfrac{x}{1 - x}} + \sqrt{\dfrac{1 - x}{x}} = 2\dfrac{1}{6}}

Solution :

Let \bf{\sqrt{\dfrac{a}{1 - a}}} be z.

So, \bf{\sqrt{\dfrac{1 - a}{a}}} will be 1/z.

So by replacing the values (in terms of z) of \bf{\sqrt{\dfrac{a}{1 - a}}} and \bf{\sqrt{\dfrac{1 - a}{a}}} , we get the new Equation as :

:\implies \bf{z + \dfrac{1}{z} = 2\dfrac{1}{6}} \\ \\ \\

:\implies \bf{z + \dfrac{1}{z} = \dfrac{(6 \times 2) + 1}{6}} \\ \\ \\

:\implies \bf{z + \dfrac{1}{z} = \dfrac{12 + 1}{6}} \\ \\ \\

:\implies \bf{z + \dfrac{1}{z} = \dfrac{13}{6}} \\ \\ \\

:\implies \bf{\dfrac{z^{2} + 1}{z} = \dfrac{13}{6}} \\ \\ \\

By cross-multiplication , we get :

:\implies \bf{6(z^{2} + 1) = 13 \times z} \\ \\ \\

:\implies \bf{6z^{2} + 6 = 13z} \\ \\ \\

:\implies \bf{6z^{2} - 13z + 6 = 0} \\ \\ \\

\boxed{\therefore \bf{6z^{2} - 13z + 6 = 0}} \\ \\ \\

Hence, here the equation is formed i.e,

\bf{6z^{2} - 13z + 6 = 0} \\ \\

Now by solving it by middle-splitting factor theorem, we get :

:\implies \bf{6z^{2} - 13z + 6 = 0} \\ \\ \\

:\implies \bf{6z^{2} - (9 + 4)z + 6 = 0} \\ \\ \\

:\implies \bf{6z^{2} - 9 - 4z + 6 = 0} \\ \\ \\

:\implies \bf{3z(2z - 3) - 2(2z -3) = 0} \\ \\ \\

:\implies \bf{(2z - 3)(3z - 2) = 0} \\ \\ \\

:\implies \bf{(2z - 3 = 0)\:;\:(3z - 2 = 0)} \\ \\ \\

:\implies \bf{(2z = 3)\:;\:(3z = 2)} \\ \\ \\

:\implies \bf{z = \dfrac{3}{2}\:;\:z = \dfrac{2}{3}} \\ \\ \\

\boxed{\therefore \bf{z = \dfrac{3}{2}\:;\:z = \dfrac{2}{3}}} \\ \\ \\

Hence, the value of \bf{\sqrt{\dfrac{a}{1 - a}}} is \bf{\dfrac{2}{3}} or \bf{\dfrac{3}{2}}.

Here , we gave got two values of \bf{\sqrt{\dfrac{a}{1 - a}}} , so by putting these value in the Equation \bf{\sqrt{\dfrac{a}{1 - a}}}, we get :

By putting the value of z as 3/2 in the Equation , we get :

:\implies \bf{\sqrt{\dfrac{a}{1 - a}} = \dfrac{3}{2}} \\ \\ \\

By Squaring on both the sides , we get :

:\implies \bf{\bigg(\sqrt{\dfrac{a}{1 - a}}\bigg)^{2} = \bigg(\dfrac{3}{2}\bigg)^{2}} \\ \\ \\

:\implies \bf{\dfrac{a}{1 - a} = \dfrac{9}{4}} \\ \\ \\

By Cross-multiplication , we get :

:\implies \bf{4a = 9(1 - a)} \\ \\ \\

:\implies \bf{4a = 9 - 9a} \\ \\ \\

:\implies \bf{4a + 9a = 9} \\ \\ \\

:\implies \bf{13a = 9} \\ \\ \\

:\implies \bf{a = \dfrac{9}{13}} \\ \\ \\

\boxed{\therefore \bf{a = \dfrac{9}{13}}} \\ \\ \\

Hence the value of a is 9/13.

By putting the value of z as 2/3 in the Equation , we get :

:\implies \bf{\sqrt{\dfrac{a}{1 - a}} = \dfrac{2}{3}} \\ \\ \\

By Squaring on both the sides , we get :

:\implies \bf{\bigg(\sqrt{\dfrac{a}{1 - a}}\bigg)^{2} = \bigg(\dfrac{2}{3}\bigg)^{2}} \\ \\ \\

:\implies \bf{\dfrac{a}{1 - a} = \dfrac{4}{9}} \\ \\ \\

By Cross-multiplication , we get :

:\implies \bf{9a = 4(1 - a)} \\ \\ \\

:\implies \bf{9a = 4 - 4a} \\ \\ \\

:\implies \bf{9a + 4a = 4} \\ \\ \\

:\implies \bf{13a = 4} \\ \\ \\

:\implies \bf{a = \dfrac{4}{13}} \\ \\ \\

\boxed{\therefore \bf{a = \dfrac{4}{13}}} \\ \\ \\

Hence the value of a is 4/13.

Thus the value of a is 9/13 and 4/13.

Answered by Anonymous
6

Answer:

Step-by-step explanation:

\Huge\boxed{Hey\:friend\:here\:your\:answer}:

Correct question:

\large\boxed{\sqrt{\frac{x}{1-x}}+ \sqrt{\frac{1-x}{x} } = 2\frac{1}{6} ,x\neq 0\:and\:x\neq 1.}

∴Given equation reduces to:

   \large\boxed{y+\frac{1}{y}=\frac{13}{6}}  

\small\boxed{6y^2+6=13y},\\\\\small\boxed{6y^2=13y+6=0},\\\\\small\boxed{(2y-3)(3y-2)=0}\\\\\small\boxed{y=\frac{3}{2} , or\:y=\frac{2}{3}}

When:\large\boxed{y=\frac{3}{2} = \sqrt{\frac{x}{1-x} }  =\frac{3}{2} =\frac{x}{1-x}=\frac{9}{4}},

\small\boxed{4x=9-9x = x= \frac{9}{13}},

And:\large\boxed{y=\frac{2}{3}=\sqrt{\frac{x}{1-x} }  =\frac{2}{3}=\frac{x}{1-x}  =\frac{4}{9}},

\small\boxed{9x=4-4x = x=\frac{4}{13}},\\\\\huge\boxed{So,\:required\:solution\:is:x=\frac{9}{13} ,\:or\:\frac{4}{13}}

\huge\boxed{Hope\:it\:helps\:you}

Similar questions