Math, asked by Anonymous, 4 months ago

Solve:-
\frac{x+2}{6} -[\frac{11-x}{3} -\frac{1}{4} ]=\frac{3x-4}{12}


No spam nd google answers
Best answers needed

Answers

Answered by suraj5070
125

 \sf \bf \huge {\boxed {\mathbb {QUESTION}}}

 \tt Solve:-

\sf \bf \dfrac{x+2}{6} -\bigg[\dfrac{11-x}{3} -\dfrac{1}{4}\bigg ]=\dfrac{3x-4}{12}

 \sf \bf \huge {\boxed {\mathbb {ANSWER}}}

\sf \bf\implies \dfrac{x+2}{6} -\bigg[\dfrac{11-x}{3} -\dfrac{1}{4} \bigg]=\dfrac{3x-4}{12}

 \tt\underline {By\: taking \:LCM}

\sf \bf\implies \dfrac{x+2}{6} -\bigg[\dfrac{44-4x-3}{12} \bigg]=\dfrac{3x-4}{12}

\sf \bf\implies \dfrac{x+2}{6} -\bigg[\dfrac{41-4x}{12}\bigg] =\dfrac{3x-4}{12}

 \tt\underline {By\: taking \:LCM}

\sf \bf\implies \dfrac{2x+4-41+4x}{12}=\dfrac{3x-4}{12}

\sf \bf\implies \dfrac{6x-37}{\cancel {12}} =\dfrac{3x-4}{\cancel {12}}

 \sf \bf \implies 6x-37=3x-4

 \sf \bf \implies 6x-3x=37-4

 \sf \bf \implies 3x=33

 \sf \bf \implies x=\dfrac{33}{3}

 \implies {\boxed {\color{blue} {\sf \bf x=11}}}

 \sf \bf \huge {\boxed {\mathbb {HOPE \:IT \:HELPS \:YOU}}}

___________________________________________

 \sf \bf \huge {\boxed {\mathbb {EXTRA\:INFORMATION}}}

 \tt {\underbrace {\overbrace {Identities}}}

 \sf \bf {(a+b)}^{2}={a}^{2}+2ab+{b}^{2}

 \sf \bf {(a-b)}^{2}={a}^{2}-2ab+{b}^{2}

 \sf \bf (a+b) (a-b) ={a}^{2}-{b}^{2}

 {\mathbb{\colorbox {orange} {\boxed{\boxed{\boxed{\boxed{\boxed{\colorbox {lime} {\boxed{\boxed{\boxed{\boxed{\boxed{\colorbox {aqua} {@suraj5070}}}}}}}}}}}}}}}

Answered by EnchantedGirl
15

Given:-

\displaystyle  \mapsto \sf \frac{x+2}{6} - \bigg(\frac{11-x}{3} - \frac{1}{4} \bigg)=\frac{3x-4}{12}

\\

To find:-

  • Value of x.

\\

Solution:-

\\

\displaystyle :\implies \sf  \frac{x+2}{6} - \bigg(\frac{11-x}{3} - \frac{1}{4} \bigg)=\frac{3x-4}{12}\\\\

\displaystyle :\implies \sf \frac{x+2}{6} -\bigg(\frac{44-4x-3}{12} \bigg) = \frac{3x-4}{12} \\\\\\:\implies \sf \frac{x+2}{6} -\bigg(\frac{41-4x}{12} \bigg)=\frac{3x-4}{12} \\\\\\:\implies \sf \frac{6x-37}{\cancel{12}} = \frac{3x-4}{\cancel{12}} \\\\\\:\implies \sf 6x-37=3x-4 \\\\\\:\implies \sf 6x - 3x = 37 - 4\\\\\\:\implies \sf 3x = 33\\\\\\:\implies \underline{\boxed{\sf x = 11.}}\\\\

Hence,

The value of x is 11.

_______________

Similar questions