Math, asked by raj337824, 11 months ago

Solve:
 \frac{x - 3}{5}  +  \frac{x - 4}{7}  = 6 -  \frac{2x - 1}{35}

Answers

Answered by Anonymous
4

\bf \red{ \underline{ \underline{Solution}}}

 \frac{x - 3}{5}  +  \frac{x - 4}{7}  = 6 -  \frac{2x - 1}{35}

 \star \: L.C.M  \: of  \: 5,7  \: and \:  35 = 35

Therefore, multiplying both sides of the equation by 35.

{35 \times ( \frac{x - 3}{5} ) + 35 \times ( \frac{x - 4}{7} ) = 35 \times 6 - 35 \times ( \frac{2x - 1}{35} )}

7(x - 3) + 5(x - 4) = 210 - (2x - 1)

7x - 21 + 5x - 20 = 210 - 2x + 1

7x + 5x - 21 - 20 = 210 + 1 - 2x

 =  > 12x - 41 = 211 - 2x

 =  > 12x + 2x = 211 + 41

 =  > 14x = 252

 =  > x =  \frac{252}{14}

 =  > \green{ x = 18}

Answered by silentlover45
0

Solutions:

(x + 3 /5) = (x - 4 /7) = 6 - (2x - 2 /35)

L.C.M of 5,7 and 35 = 35

Therefore, multiplying both sides of the equation by 35.

35 × (x + 3 /5) + 35 × (x - 4 /7) = 35 × 6 - (2x - 2 /35)

7(x - 3) + 5(x - 4) = 210 - (2x - 1)

7x - 21 + 5x - 20 = 210 + 2x + 1

7x + 5x - 21 - 20 = 210 + 1 - 2x

12x + 2x = 211 + 2x

14x = 252

x = 18

silentlover45.❤️

Similar questions