Math, asked by Anonymous, 18 days ago

Solve:

 \huge{ \frac{ {1}^{ {2}^{ {3}^{999} } } }{ {2}^{ {93}^{ (- 999)} } \times  \frac{ {999}^{ 666} }{ {0}^{1} }  }  \times  \frac{ {5}^{3698} }{ {4}^{ - 2} } }
Give Me ✅Right Answer.!!
Be Intelligent.
(Too easy question)​

Answers

Answered by shardakuknaa
4

Answer:

your answer is in the attachment

Attachments:
Answered by Anonymous
8

Answer:

\huge{ \frac{ {1}^{ {2}^{ {3}^{999} } } }{ {2}^{ {93}^{ (- 999)} } \times \frac{ {999}^{ 666} }{ {0}^{1} } } \times \frac{ {5}^{3698} }{ {4}^{ - 2} } }

Step-by-step explanation:

 \frac{( {(1})^{2} ) ^{3 \times 999} }{( {2})^{ - 999 \times 2 } \times 0 }  \times  \frac{ {(5})^{3698} }{ \frac{1}{ {4}^{2} } }

  \frac{ 1 }{0}  \times   {5}^{3698}  \times  {4}^{2}

0 \times  {5}^{3698}  \times 8

0

I hope it is helpful

Similar questions