Math, asked by diwanamrmznu, 4 days ago

solve


 \implies \:  \red{ \int \:x  \sin(\pi \: x)dx} \\



pls ​

Answers

Answered by varadad25
13

Answer:

\displaystyle{\boxed{\red{\sf\:\int\:x\:\sin\:(\:\pi\:x\:)\:dx\:=\:\dfrac{\sin\:(\:\pi\:x\:)\:-\:\pi\:x\:\cos\:(\:\pi\:x\:)}{\pi^2}\:+\:C\:}}}

Step-by-step-explanation:

We have to integrate the given function.

The given function is

\displaystyle{\sf\:x\:\sin\:(\:\pi\:x\:)}

Now, using integration by parts,

\displaystyle{\boxed{\pink{\sf\:\int\:(\:uv'\:)\:=\:uv\:-\:\int\:(\:u'v\:)\:}}}

  • u is a function
  • v' is another function
  • u' is derivative of u
  • v is integral of v'

Let,

\displaystyle{\sf\:x\:=\:u}

\displaystyle{\sf\:\sin\:(\:\pi\:x\:)\:=\:v'}

Now,

\displaystyle{\sf\:u'\:=\:\dfrac{d}{dx}\:(\:u\:)}

\displaystyle{\implies\sf\:u'\:=\:\dfrac{d}{dx}\:(\:x\:)}

\displaystyle{\implies\:\boxed{\sf\:u'\:=\:1}}

Now,

\displaystyle{\sf\:v\:=\:\int\:v'}

\displaystyle{\implies\sf\:v\:=\:\int\:[\:\sin\:(\:\pi\:x\:)\:] \:dx}

By substituting \displaystyle{\sf\:\pi\:x\:=\:w},

Differentiating both sides w.r.t x, we get,

\displaystyle{\sf\:\dfrac{d}{dx}\:(\:w\:)\:=\:\dfrac{d}{dx}\:(\:\pi\:x\:)}

\displaystyle{\implies\sf\:\dfrac{dw}{dx}\:=\:\pi\:\dfrac{d}{dx}\:(\:x\:)}

\displaystyle{\implies\sf\:\dfrac{dw}{dx}\:=\:\pi\:\times\:1}

\displaystyle{\implies\sf\:\dfrac{dw}{dx}\:=\:\pi}

\displaystyle{\implies\sf\:dx\:=\:\dfrac{1}{\pi}\:dw}

Now,

\displaystyle{\sf\:v\:=\:\int\:\sin\:(\:w\:)\:\dfrac{1}{\pi}\:dw}

\displaystyle{\implies\sf\:v\:=\:\dfrac{1}{\pi}\:\int\:\sin\:(\:w\:)\:dw}

We know that,

\displaystyle{\boxed{\blue{\sf\:\int\:\sin\:(\:x\:)\:dx\:=\:-\:\cos\:x\:+\:C\:}}}

\displaystyle{\implies\sf\:v\:=\:\dfrac{1}{\pi}\:(\:-\:\cos\:w\:)}

Re-substituting \displaystyle{\sf\:w\:=\:\pi\:x},

\displaystyle{\implies\sf\:v\:=\:\dfrac{1}{\pi}\:[\:-\:\cos\:(\:\pi\:x\:)\:]}

\displaystyle{\implies\:\boxed{\sf\:v\:=\:\dfrac{-\:\cos\:(\:\pi\:x\:)}{\pi}}}

Now, using integration by parts,

\displaystyle{\sf\:\int\:(\:uv'\:)\:=\:uv\:-\:\int\:(\:u'v\:)}

\displaystyle{\implies\sf\:\int\:x\:\sin\:(\:\pi\:x\:)\:dx\:=\:x\:\left(\:\dfrac{-\:\cos\:(\:\pi\:x\:)}{\pi}\:\right)\:-\:\int\:\left(\:1\:\times\:\dfrac{-\:\cos\:(\:\pi\:x\:)}{\pi}\:\right)\:dx}

\displaystyle{\implies\sf\:\int\:x\:\sin\:(\:\pi\:x\:)\:dx\:=\:\dfrac{-\:x\:\cos\:(\:\pi\:x\:)}{\pi}\:-\:\int\:\left(\:\dfrac{-\:\cos\:(\:\pi\:x\:)}{\pi}\:\right)\:dx}

Now,

\displaystyle{\sf\:\int\:\left(\:\dfrac{-\:\cos\:(\:\pi\:x\:)}{\pi}\:\right)\:dx}

\displaystyle{\implies\sf\:\dfrac{-\:1}{\pi}\:\int\:\cos\:(\:\pi\:x\:)\:dx}

By substituting \displaystyle{\sf\:\pi\:x\:=\:a},

Differentiating both sides w.r.t x, we get,

\displaystyle{\sf\:\dfrac{d}{dx}\:(\:a\:)\:=\:\dfrac{d}{dx}\:(\:\pi\:x\:)}

\displaystyle{\implies\sf\:\dfrac{da}{dx}\:=\:\pi\:\dfrac{d}{dx}\:(\:x\:)}

\displaystyle{\implies\sf\:\dfrac{da}{dx}\:=\:\pi\:\times\:1}

\displaystyle{\implies\sf\:\dfrac{da}{dx}\:=\:\pi}

\displaystyle{\implies\sf\:dx\:=\:\dfrac{1}{\pi}\:da}

Now,

\displaystyle{\implies\sf\:\dfrac{-\:1}{\pi}\:\int\:\cos\:(\:\pi\:x\:)\:dx}

\displaystyle{\implies\sf\:\dfrac{-\:1}{\pi}\:\int\:\cos\:(\:a\:)\:\dfrac{1}{\pi}\:da}

\displaystyle{\implies\sf\:\dfrac{-\:1}{\pi}\:\times\:\dfrac{1}{\pi}\:\int\:\cos\:(\:a\:)\:da}

We know that,

\displaystyle{\boxed{\green{\sf\:\int\:\cos\:(\:x\:)\:dx\:=\:\sin\:x\:+\:C\:}}}

\displaystyle{\implies\sf\:\dfrac{-\:1}{\pi^2}\:\sin\:(\:a\:)}

Re-substituting \displaystyle{\sf\:a\:=\:\pi\:x},

\displaystyle{\implies\sf\:\dfrac{-\:1}{\pi^2}\:\sin\:(\:\pi\:x\:)}

Substituting this value in the original integral,

\displaystyle{\sf\:\int\:x\:\sin\:(\:\pi\:x\:)\:dx\:=\:\dfrac{-\:x\:\cos\:(\:\pi\:x\:)}{\pi}\:-\:\int\:\left(\:\dfrac{-\:\cos\:(\:\pi\:x\:)}{\pi}\:\right)\:dx}

\displaystyle{\implies\sf\:\int\:x\:\sin\:(\:\pi\:x\:)\:dx\:=\:\dfrac{-\:x\:\cos\:(\:\pi\:x\:)}{\pi}\:-\:\left[\:\dfrac{-\:1}{\pi^2}\:\sin\:(\:\pi\:x\:)\:\right]}

\displaystyle{\implies\sf\:\int\:x\:\sin\:(\:\pi\:x\:)\:dx\:=\:\dfrac{-\:x\:\cos\:(\:\pi\:x\:)}{\pi}\:+\:\dfrac{\sin\:(\:\pi\:x\:)}{\pi^2}}

\displaystyle{\implies\sf\:\int\:x\:\sin\:(\:\pi\:x\:)\:dx\:=\:\dfrac{-\:x\:\cos\:(\:\pi\:x\:)}{\pi}\:\times\:\dfrac{\pi}{\pi}\:+\:\dfrac{\sin\:(\:\pi\:x\:)}{\pi^2}}

\displaystyle{\implies\sf\:\int\:x\:\sin\:(\:\pi\:x\:)\:dx\:=\:\dfrac{-\:\pi\:x\:\cos\:(\:\pi\:x\:)}{\pi^2}\:+\:\dfrac{\sin\:(\:\pi\:x\:)}{\pi^2}}

\displaystyle{\implies\sf\:\int\:x\:\sin\:(\:\pi\:x\:)\:dx\:=\:\dfrac{-\:\pi\:x\:\cos\:(\:\pi\:x\:)\:+\:\sin\:(\:\pi\:x\:)}{\pi^2}}

\displaystyle{\therefore\:\underline{\boxed{\red{\sf\:\int\:x\:\sin\:(\:\pi\:x\:)\:dx\:=\:\dfrac{\sin\:(\:\pi\:x\:)\:-\:\pi\:x\:\cos\:(\:\pi\:x\:)}{\pi^2}\:+\:C\:}}}}

Similar questions