Math, asked by Anonymous, 6 hours ago

Solve:⠀

⠀⠀⠀⠀\large\sf{5x \:  + \dfrac{7}{2} =  \dfrac{3}{2}x - 14   }

Note:
- Need full Explanation
- Don't Spam​

Answers

Answered by PragyaGupta0306
1

Hope this will help you....

Attachments:
Answered by Anonymous
9

Answer:

  • the value of the variable  x is - 5

Step-by-step explanation:

Given :-

{\bigstar{\underline{\boxed{\tt{ 5x + \dfrac{7}{2} = \dfrac{3}{5} x - 14 }}}}}

To Find :-

  • The value of the variable x

Solution :-

Given equation

\rightarrow \tt \qquad 5x+\dfrac{7}{2}  =\dfrac{3}{2}  x-14

⋆ Transposing the terms

\rightarrow \tt \qquad 5x-\dfrac{3}{2}x =-14 - \dfrac{7}{2}

⋆ Simplifying it further

\rightarrow \tt \qquad \dfrac{10x}{2} -\dfrac{3x}{2}  =\dfrac{-28}{\;2}  - \dfrac{7}{2}

\rightarrow \tt \qquad \dfrac{10x - 3x}{2}  =\dfrac{-28 -7}{2}

\rightarrow \tt \qquad \dfrac{10x - 3x}{2}  =\dfrac{-28 -7}{2}

\rightarrow \tt \qquad \dfrac{7x}{2}  =\dfrac{-35}{\;\;2}

⋆ Crossmultiplying the fractions

\rightarrow \tt \qquad 2( 7x ) = 2( - 35 )

\rightarrow \tt \qquad 14x = -  70

\rightarrow \tt \qquad x =\cancel\dfrac{-70}{\;14}

\rightarrow \tt \qquad {\pink{\boxed{\frak{ x = - 5 }}}\purple\bigstar}

Verification :-

\rightarrow \tt \qquad 5(-5)+\dfrac{7}{2}  =\dfrac{3}{2}  (-5)-14

\rightarrow \tt \qquad - 25+\dfrac{7}{2}  =\dfrac{-15}{2}  -14

\rightarrow \tt \qquad \dfrac{- 50 + 7}{2}  =\dfrac{-15-28}{2}

\rightarrow \tt \qquad {\blue{\boxed{\frak{ \dfrac{- 43}{\;\;2}  =\dfrac{-43}{2} }}}\star}

  • Hence verified..!!!
Similar questions