Math, asked by lithiya1158, 5 hours ago

*Solve*
\left.\begin{array}{l}{\frac{1}{2(2x+3y)}+\frac{12}{7(3x-2y)}=\frac{1}{2}}\\{\frac{7}{2x+3y}+\frac{4}{3x-2y}=2}\end{array}\right.
please help me with this question ​

Answers

Answered by XxSrishtiRajputxX
0

Answer:

Solve*

\left.\begin{array}{l}{\frac{1}{2(2x+3y)}+\frac{12}{7(3x-2y)}=\frac{1}{2}}\\{\frac{7}{2x+3y}+\frac{4}{3x-2y}=2}\end{array}\right.

Answered by GraceS
0

\sf\huge\bold\pink{Answer:}

\left.\begin{array}{l}{\frac{1}{2(2x+3y)}+\frac{12}{7(3x-2y)}=\frac{1}{2}}\\{\frac{7}{2x+3y}+\frac{4}{3x-2y}=2}\end{array}\right. \\ taking \:  \frac{1}{2x + 3y}  = u \: and \:  \frac{1}{3x - 2y}  = v

\left.\begin{array}{l}{\frac{u}{2}+\frac{12v}{7}=\frac{1}{2}}..i\\{7u+4v=2}\end{array}\right...ii \\7u + 24v = 1 \\ 7u + 4v = 2

Similar questions