Math, asked by SharmaShivam, 1 year ago

Solve : \left(\frac{-1-i}{\sqrt{2}}\right)^{100}

Answers

Answered by BraɪnlyRoмan
46

\huge \boxed{ \underline{ \underline{ \bf{Answer}}}}

 \sf{ \: To \:  Solve : (  {\frac{ - 1 - i }{  \sqrt{2} }  )}^{100} }

SOLUTION :

  =  \sf {\: (  {\frac{ - 1 - i }{  \sqrt{2} }  )}^{100}}

  =  \: \sf{ { [(  {\frac{ - 1 - i }{  \sqrt{2} }  )}^{2} ]}^{50}  }

  =  \:  \sf{{ [{\frac{ (- 1 - i) }{  ({ \sqrt{2} )}^{2}}}^{2} ]}^{50}}

  =  \: \sf{ { [{\frac{  ({ - 1)}^{2} + \:   {i} \: ^{2}  - ( - 2i)  }{2 }} ]}^{50}}

 =  \:  \sf{ { [\frac{1 \: +  \:  ( - 1) \:  + 2i}{2} ]}^{50} }

 =  \:  \sf{  {( \frac{2i}{2}  )}^{50} }

 =  \:   \sf{{(i)}^{50} }

We can write it like this,

 =  \: \sf {{ ({i}^{4})}^{12}  . \:  {i}^{2} }

 =  \: \sf{  {1}^{12} . {i}^{2} }

 \:  =    \sf{\:  {i}^{2} }

 =  \:  - 1

HENCE OUR REQUIRED ANSWER IS -1.

Answered by Anonymous
2

Answer:

Step-by-step explanation:

Complex numbers:-

We are provided with a complex number.

We know,cos45°=sin45°=1/✓2

We convert the given complex number into polar form.

Then we apply De Moivre's theorem.

De Moivre's theorem:-

(cosø+isinø)^n=cosnø+isinnø

cos25π=-1,sin25π=0

Hence, answer is -1

Attachments:
Similar questions