Math, asked by Anonymous, 15 days ago

Solve :-
\lim\limits_{x\to \frac{3}{2}} \left[\dfrac{\sin(2x-3)}{(2x-3)}\right]

I am unaware of any such method where x is not tending towards 0. Help me !!

Chapter-13 limits and derivatives

Answers

Answered by mathdude500
112

\large\underline{\sf{Solution-}}

 \red{\rm :\longmapsto\:\displaystyle\lim_{x \to  \dfrac{3}{2} }  \rm\: \dfrac{sin(2x - 3)}{2x - 3} }

If we put directly the value of x, we get

\rm \:  =  \:  \: \dfrac{sin\bigg(2 \times \dfrac{3}{2}   - 3\bigg) }{2 \times \dfrac{3}{2}  - 3}

\rm \:  =  \:  \: \dfrac{sin\bigg(3   - 3\bigg) }{3  - 3}

\rm \:  =  \:  \: \dfrac{sin0}{0}

\rm \:  =  \:  \: \dfrac{0}{0}  \: which \: is \: meaningless

To solve this

 \red{\rm :\longmapsto\:\displaystyle\lim_{x \to  \dfrac{3}{2} }  \rm\: \dfrac{sin(2x - 3)}{2x - 3} }

we use method of Substitution

 \green{\rm :\longmapsto\:Put \: x \:  =  \: \dfrac{3}{2} - y, \:  \: as \: x \to \: \dfrac{3}{2},\:   \: y \to \: 0}

So, above expression can be reduced to

\rm \:  =  \:  \: \:\displaystyle\lim_{y \to 0} \: \dfrac{sin\bigg(2 \times \bigg(\dfrac{3}{2} - y\bigg) - 3 \bigg) }{2 \times \bigg(\dfrac{3}{2} - y\bigg) - 3 }

\rm \:  =  \:  \: \:\displaystyle\lim_{y \to 0} \: \dfrac{sin(3 - 2y - 3)}{3 - 2y - 3}

\rm \:  =  \:  \: \:\displaystyle\lim_{y \to 0} \: \dfrac{sin(- 2y)}{- 2y}

We know,

\boxed{ \bf{ \: \displaystyle\lim_{x \to 0}\dfrac{sinx}{x} = 1}}

So, using this identity, we get

\rm \:  =  \:  \: 1

Hence,

 \red{\rm :\longmapsto\:\displaystyle\lim_{x \to  \dfrac{3}{2} }  \rm\: \dfrac{sin(2x - 3)}{2x - 3}  = 1}

Additional Information :-

\boxed{ \bf{ \: \displaystyle\lim_{x \to 0}\dfrac{tanx}{x} = 1}}

\boxed{ \bf{ \: \displaystyle\lim_{x \to 0}\dfrac{sin {}^{ - 1} x}{x} = 1}}

\boxed{ \bf{ \: \displaystyle\lim_{x \to 0}\dfrac{tan {}^{ - 1} x}{x} = 1}}

\boxed{ \bf{ \: \displaystyle\lim_{x \to 0} \frac{ {e}^{x}  - 1}{x} = 1}}

\boxed{ \bf{ \: \displaystyle\lim_{x \to 0} \frac{ {a}^{x}  - 1}{x} = loga}}

\boxed{ \bf{ \: \displaystyle\lim_{x \to 0} \frac{log(1 + x)}{x} = 1}}

Answered by TrustedAnswerer19
117

Answer:

I will solve this math by La' Hospital's rule .

Rule :

La' Hospital's Rule tells us that if we have an indeterminate form 0/0 or ∞/∞ all we need to do is differentiate the numerator and differentiate the denominator and then take the limit.

Solution :

 \sf \: \displaystyle \lim_{x \to  \frac{3}{2} }  \:  \frac{sin(2x - 3)}{2x - 3}  \\  \\  = \displaystyle\lim_{x \to  \frac{3}{2} } \frac{ \frac{d}{dx}  \{sin(2x - 3) \}}{ \frac{d(2x - 3)}{dx} }  \\  \\  = \displaystyle\lim_{x \to  \frac{3}{2} } \frac{cos(2x - 3) \times  \frac{d(2x - 3)}{dx} }{2  \times 1- 0}  \\  \\  = \displaystyle\lim_{x \to  \frac{3}{2} } \frac{cos(2x - 3) \times (2  \times 1- 0)}{2}  \\  \\  = \displaystyle\lim_{x \to  \frac{3}{2} } \frac{ \cancel{2} \: cos(2x - 3)}{ \cancel{2}}  \\  \\ =  \displaystyle\lim_{x \to  \frac{3}{2} } \: cos(2x - 3) \\  \\  = cos(2 \times  \frac{3}{2}  - 3) \\  \\  = cos(3 - 3) \\  \\  = cos0 \\  \\  = 1

Similar questions