Math, asked by Ganesh094, 2 months ago

Solve
lim_{x➝1} \frac{(2x-3)( \sqrt{1 } - x )}{ 2 {x}^{2}  + x - 3  }

Answers

Answered by Anonymous
16

\huge{\underline\mathbf {\red{{Answer:}}}}

\mathbf{\frac{-1}{10}}

Step-by-step explanation:

In this question,

We have to find the value of the given equation as x tends to 1

lim_{x\implies1}\frac{(2x-3)(\sqrt{x}-1)}{2x^{2}+x-3}

 \textsf{This expression in the form} \frac{0}{0}

lim_{x\implies1}\frac{(2x-3)(\sqrt{x}-1)}{2x^{2}+3x-2x-3}

lim_{x\implies1}\frac{(2x-3)(\sqrt{x}-1)}{x(2x+3)-1(2x+3)}

lim_{x\implies1}\frac{(2x-3)(\sqrt{x}-1)}{(x-1)(2x+3)}

lim_{x\implies1}\frac{(2x-3)(\sqrt{x}-1)}{(\sqrt{x})^{2}-1^{2})(2x+3)}

lim_{x\implies1}\frac{(2x-3)(\sqrt{x}-1)}{(\sqrt{x}-1)(\sqrt{x}+1)(2x+3)}

lim_{x\implies1}\frac{(2x-3)(\sqrt{x}-1)}{(\sqrt{x}+1)(2x+3)}

Now putting the value of x as 1 We get,

\frac{2\times 1 - 3}{(1+1)(2+3)} </p><p>

\mathbf{\frac{-1}{10}}

\huge{\underline\mathbf {\red{{HOPE \: \: \: IT \: \: \: \: \: HELPS}}}}

Similar questions