Math, asked by pervezafraj, 1 month ago

Solve:
 log(1 + x)  = 2 log(x)

Answers

Answered by senboni123456
1

Answer:

Step-by-step explanation:

We have,

\tt{log(1+x)=2\,log(x)}

\tt{\implies\,log(1+x)=log(x^2)}

\tt{\implies\,1+x=x^2}

\tt{\implies\,x^2-x-1=0}

\tt{\implies\,x=\dfrac{-(-1)\pm\sqrt{(-1)^2-4\cdot(-1)\cdot(1)}}{2\cdot(1)}}

\tt{\implies\,x=\dfrac{1\pm\sqrt{1+4}}{2}}

\tt{\implies\,x=\dfrac{1\pm\sqrt{5}}{2}}

\implies\boxed{\tt{x=\dfrac{1+\sqrt{5}}{2}\,\,\,\,\,\,\,or\,\,\,\,\,\,\,x=\dfrac{1-\sqrt{5}}{2}}}

Similar questions