Math, asked by aloobiriyani1999, 1 day ago

Solve
 log_{2}( log_{2}x)  = 4

Answers

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

Given Logarithmic equation is

\rm \: log_{2}( log_{2}x) = 4 \\

We know,

\boxed{ \rm{ \: log_{a}(b) = c \: \rm\implies \:b =  {a}^{c} \:  \: }} \\

So, using this, we get

\rm \:  log_{2}(x) =  {2}^{4}  \\

\rm \:  log_{2}(x) =  16  \\

Again we know,

\boxed{ \rm{ \: log_{a}(b) = c \: \rm\implies \:b =  {a}^{c} \:  \: }} \\

So, using this result, we get

\rm\implies \:\boxed{ \rm{ \:\rm \: x =  {2}^{16}  \:  \: }} \\

\rule{190pt}{2pt}

Additional Information :-

\begin{gathered}\: \: \: \: \: \: \begin{gathered}\begin{gathered} \footnotesize{\boxed{ \begin{array}{cc} \small\underline{\frak{\pmb{ \red{More \: Formulae}}}} \\ \\ \bigstar \: \bf{ log_{x}(x)  = 1}\\ \\ \bigstar \: \bf{ log_{x}( {x}^{y} )  = y}\\ \\ \bigstar \: \bf{ log_{ {x}^{z} }( {x}^{w} )  = \dfrac{w}{z} }\\ \\ \bigstar \: \bf{ log_{a}(b)  = \dfrac{logb}{loga} }\\ \\ \bigstar \: \bf{ {e}^{logx}  = x}\\ \\ \bigstar \: \bf{ {e}^{ylogx}  =  {x}^{y}}\\ \\ \bigstar \: \bf{log1 = 0}\\  \end{array} }}\end{gathered}\end{gathered}\end{gathered}

Similar questions