Computer Science, asked by sakshipawar5, 1 year ago

Solve :
 log_{2x}(2)  +  log_{4}(2x)  =   -  \frac{3}{2}

Answers

Answered by Anonymous
25

Answer:

x =  {2}^{ - 2}  \: or \:  {2}^{ - 3}

✌️Hope it will help you.✌️

Attachments:
Answered by Anonymous
0

Answer:

 =  >  \frac{1}{1 +  log {}^{x} _ {2}}   +  \frac{ log_{2x}}{ \frac{2}{2} }  =  \frac{ - 3}{2}  \\  \\ or \:  \:  \:   =  > \frac{1}{1 +  log {}^{x} _{2} }  +  \frac{1 +  log \: x}{ \frac{2}{2} }  =  \frac{ - 3}{2}

Let 1 + log2 x = y

 =  >  \frac{1}{y}  +  \frac{y}{2}  =  \frac{ - 3}{2}  \\  =  > 2 + y {}^{2} +  3y = 0 \\  =  > y =  - 1 \:  \:  \: or \:  \:  \:    - 2  \\  =  > 1 +  log_{2}  \: x =  - 1  \:  \:  \: or \:  \:  - 2  \\ =  > log_{2} \: x =  - 2 \:  \:  \: or \:  \:  \:  - 3 \\  =  > x = 2 {}^{ - 2}  \:  \:  \: or \:  \:  \: 2 {}^{ - 3}

Similar questions